These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6025343)

  • 1. Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy.
    Hasselbach W; Elfvin LG
    J Ultrastruct Res; 1967 Mar; 17(5):598-622. PubMed ID: 6025343
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum.
    Hasselbach W
    Ann N Y Acad Sci; 1966 Jul; 137(2):1041-8. PubMed ID: 5229806
    [No Abstract]   [Full Text] [Related]  

  • 3. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium transport in isolated sarcoplasmic reticulum during muscle maturation.
    Fanburg BL; Drachman DB; Moll D; Roth SI
    Nature; 1968 Jun; 218(5145):962-4. PubMed ID: 4234574
    [No Abstract]   [Full Text] [Related]  

  • 5. Density gradient separation of sarcotubular vesicles and other particulate constituents of rabbit muscle.
    Seraydarian K; Mommaerts WF
    J Cell Biol; 1965 Aug; 26(2):641-56. PubMed ID: 4222283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ryanodine-caffeine-sensitive membrane fraction of skeletal muscle.
    Fairhurst AS
    Am J Physiol; 1974 Nov; 227(5):1124-31. PubMed ID: 4280249
    [No Abstract]   [Full Text] [Related]  

  • 7. Relation of lipid structure of sarcotubular vesicles to Ca++ transport activity.
    Yu BP; DeMartinis FD; Masoro EJ
    J Lipid Res; 1968 Jul; 9(4):492-500. PubMed ID: 4235745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE CARDIAC CALCIUM PUMP.
    CARSTEN ME
    Proc Natl Acad Sci U S A; 1964 Dec; 52(6):1456-62. PubMed ID: 14243518
    [No Abstract]   [Full Text] [Related]  

  • 9. Isolation of Ca++-sequestering sarcotubular membranes from rat skeletal muscle.
    Yu BP; DeMartinis FD; Masoro EJ
    Anal Biochem; 1968 Sep; 24(3):523-30. PubMed ID: 4235507
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition by ergotamine and ergobasinine of Ca2+ uptake from the sarcotubular system.
    Azzone GF; Milic G; Marcer G; Ottolenghi A
    Biochim Biophys Acta; 1966 Feb; 115(2):513-5. PubMed ID: 4223312
    [No Abstract]   [Full Text] [Related]  

  • 11. ATP-DRIVEN ACTIVE TRANSPORT OF CALCIUM IN THE MEMBRANES OF THE SARCOPLASMIC RETICULUM.
    HASSELBACH W
    Proc R Soc Lond B Biol Sci; 1964 Oct; 160():501-4. PubMed ID: 14214779
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of sarcotubular calcium transport by caffeine: species and temperature dependence.
    Fuchs F
    Biochim Biophys Acta; 1969 Apr; 172(3):566-70. PubMed ID: 5787639
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum.
    Meissner G
    Biochim Biophys Acta; 1973 Apr; 298(4):906-26. PubMed ID: 4269715
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes.
    Baskin RJ; Deamer DW
    J Cell Biol; 1969 Dec; 43(3):610-7. PubMed ID: 5351408
    [No Abstract]   [Full Text] [Related]  

  • 15. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites.
    Pease DC; Jenden DJ; Howell JN
    J Cell Physiol; 1965 Apr; 65(2):141-53. PubMed ID: 5835953
    [No Abstract]   [Full Text] [Related]  

  • 16. [Inhibition by reserpine, prenylamine, chlorpromazine and imipramine of active calcium transport in the sarcoplasmic reticulum membrane].
    Balzer H; Makinose M; Hasselbach W
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(1):7-8. PubMed ID: 4231889
    [No Abstract]   [Full Text] [Related]  

  • 17. The calcium transport of sarcoplasmic reticulum.
    Martonosi AN; Chyn TL; Schibeci A
    Ann N Y Acad Sci; 1978 Apr; 307():148-59. PubMed ID: 152086
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A; Selinger Z
    Biochim Biophys Acta; 1969 Jun; 183(1):27-35. PubMed ID: 4307352
    [No Abstract]   [Full Text] [Related]  

  • 19. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 20. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria.
    Harigaya S; Schwartz A
    Circ Res; 1969 Dec; 25(6):781-94. PubMed ID: 5364651
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.