These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 602571)

  • 41. Amino acids and proteins in the chloragosomes of Lumbricus terrestris L.
    Fischer E
    Acta Biol Acad Sci Hung; 1971; 22(3):365-8. PubMed ID: 5156879
    [No Abstract]   [Full Text] [Related]  

  • 42. [Comparative ultrastructural study of the protonephridium of Eteone longa and the metanephridium of Lumbricus terrestris].
    Vinnichenko LN; Lebskiĭ VK
    Tsitologiia; 1975 Jun; 17(6):615-9. PubMed ID: 1154490
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens.
    Morgan AJ; Turner MP
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of temperature on heavy metal toxicity to earthworm Lumbricus terrestris (Annelida: Oligochaeta).
    Khan MA; Ahmed SA; Salazar A; Gurumendi J; Khan A; Vargas M; von Catalin B
    Environ Toxicol; 2007 Oct; 22(5):487-94. PubMed ID: 17696136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Ca+ on the photobactericidal efficacy of methylene blue and toluidine blue against gram-negative bacteria and the dye affinity for lipopolysaccharides.
    Usacheva MN; Teichert MC; Sievert CE; Biel MA
    Lasers Surg Med; 2006 Dec; 38(10):946-54. PubMed ID: 17163474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organization of the sensory system of the earthworm Lumbricus terrestris (Annelida, Clitellata) visualized by DiI.
    Kiszler G; Varhalmi E; Berta G; Molnar L
    J Morphol; 2012 Jul; 273(7):737-45. PubMed ID: 22460917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Conversion of thiazine dyes in submicroscopic structural determinations].
    Makovitzky J
    Acta Histochem Suppl; 1981; 24():207-20. PubMed ID: 6785827
    [No Abstract]   [Full Text] [Related]  

  • 48. Xanthene dyes as photochemical donors for the nitrogenase reaction.
    Druzhinin SY; Syrtsova LA; Denisov NN; Shkondina NI; Gak VY
    Biochemistry (Mosc); 1998 Aug; 63(8):996-1006. PubMed ID: 9767191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adsorption of dyes on Sahara desert sand.
    Varlikli C; Bekiari V; Kus M; Boduroglu N; Oner I; Lianos P; Lyberatos G; Icli S
    J Hazard Mater; 2009 Oct; 170(1):27-34. PubMed ID: 19515485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cold-stress induced formation of calcium and phosphorous rich chloragocyte granules (chloragosomes) in the earthworm Eisenia fetida.
    Molnár L; Engelmann P; Somogyi I; Mácsik LL; Pollák E
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Oct; 163(2):199-209. PubMed ID: 22710253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.
    Gong JL; Wang B; Zeng GM; Yang CP; Niu CG; Niu QY; Zhou WJ; Liang Y
    J Hazard Mater; 2009 May; 164(2-3):1517-22. PubMed ID: 18977077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Histochemical investigations of metabolic activity of chloragosomes of Lumbricus terristris].
    Fischer E
    Acta Histochem; 1973; 46(1):1-9. PubMed ID: 4134937
    [No Abstract]   [Full Text] [Related]  

  • 53. Design and synthesis of regioisomerically pure unsymmetrical xanthene derivatives for staining live cells and their photochemical properties.
    Kamino S; Ichikawa H; Wada S; Horio Y; Usami Y; Yamaguchi T; Koda T; Harada A; Shimanuki K; Arimoto M; Doi M; Fujita Y
    Bioorg Med Chem Lett; 2008 Aug; 18(15):4380-4. PubMed ID: 18621526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of thiazine dyes by bovine pulmonary arterial endothelial cells in culture.
    Bongard RD; Merker MP; Shundo R; Okamoto Y; Roerig DL; Linehan JH; Dawson CA
    Am J Physiol; 1995 Jul; 269(1 Pt 1):L78-84. PubMed ID: 7631818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of rhodamine 123 with living cells studied by flow cytometry.
    Darzynkiewicz Z; Traganos F; Staiano-Coico L; Kapuscinski J; Melamed MR
    Cancer Res; 1982 Mar; 42(3):799-806. PubMed ID: 7059978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions.
    Mosleh YY; Paris-Palacios S; Couderchet M; Vernet G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):59-68. PubMed ID: 12701406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of white rot fungus Funalia trogii in detoxification of textile dyes.
    Apohan E; Yesilada O
    J Basic Microbiol; 2005; 45(2):99-105. PubMed ID: 15812863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectrophotometric and spectrofluorometric studies on interaction of cationic dyes with bacterial capsular polysaccharide.
    Mitra A; Chakraborty AK
    Indian J Biochem Biophys; 1998 Aug; 35(4):241-6. PubMed ID: 9854905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photodynamic activity of nanostructured fabrics grafted with xanthene and thiazine dyes against opportunistic fungi.
    Kim JR; Michielsen S
    J Photochem Photobiol B; 2015 Sep; 150():50-9. PubMed ID: 25972050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solvent effect on the electronic spectra of azine dyes under alkaline condition.
    Basu S; Panigrahi S; Praharaj S; Ghosh SK; Pande S; Jana S; Pal A; Pal T
    J Phys Chem A; 2007 Feb; 111(4):578-83. PubMed ID: 17249746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.