These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6026672)

  • 1. Cocoon surrounding desert-dwelling frogs.
    Lee AK; Mercer EH
    Science; 1967 Jul; 157(3784):87-8. PubMed ID: 6026672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cocoon of the fossorial frog Cyclorana australis functions primarily as a barrier to water exchange with the substrate.
    Reynolds SJ; Christian KA; Tracy CR
    Physiol Biochem Zool; 2010; 83(5):877-84. PubMed ID: 20687829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water balance of field-excavated aestivating Australian desert frogs, the cocoon-forming Neobatrachus aquilonius and the non-cocooning Notaden nichollsi (Amphibia: Myobatrachidae).
    Cartledge VA; Withers PC; McMaster KA; Thompson GG; Bradshaw SD
    J Exp Biol; 2006 Sep; 209(Pt 17):3309-21. PubMed ID: 16916967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cocoon and epidermis of Australian Cyclorana frogs differ in composition of lipid classes that affect water loss.
    Sadowski-Fugitt LM; Tracy CR; Christian KA; Williams JB
    Physiol Biochem Zool; 2012; 85(1):40-50. PubMed ID: 22237288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water content, body weight and acid mucopolysaccharides, hyaluronidase and beta-glucuronidase in response to aestivation in Australian desert frogs.
    Bayomy MF; Shalan AG; Bradshaw SD; Withers PC; Stewart T; Thompson G
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Apr; 131(4):881-92. PubMed ID: 11897199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OSMOTIC TOLERANCE OF THE MUSCLES OF TWO DESERT-INHABITING TOADS, BUFO COGNATUS AND SCAPHIOPUS COUCHI.
    MCCLANAHAN L
    Comp Biochem Physiol; 1964 Aug; 12():501-8. PubMed ID: 14206962
    [No Abstract]   [Full Text] [Related]  

  • 7. Water balance and arginine vasotocin in the cocooning frog Cyclorana platycephala (hylidae).
    Cartledge VA; Withers PC; Bradshaw SD
    Physiol Biochem Zool; 2008; 81(1):43-53. PubMed ID: 18040971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frogs and estivation: transcriptional insights into metabolism and cell survival in a natural model of extended muscle disuse.
    Reilly BD; Schlipalius DI; Cramp RL; Ebert PR; Franklin CE
    Physiol Genomics; 2013 May; 45(10):377-88. PubMed ID: 23548685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in body fluids of the frog Leptodactylus fuscus during estivation (Anura, Leptodactylidae)].
    Abe AS; Garcia LS
    Rev Bras Biol; 1990 Feb; 50(1):243-7. PubMed ID: 2089487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptations of the reed frog Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae) to its arid environment : IV. Ecological significance of water economy with comments on thermoregulation and energy allocation.
    Geise W; Linsenmair KE
    Oecologia; 1988 Nov; 77(3):327-338. PubMed ID: 28311945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estivation in South American amphibians and reptiles.
    Abe AS
    Braz J Med Biol Res; 1995; 28(11-12):1241-7. PubMed ID: 8728854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell junctions in amphibian skin.
    Farquhar MG; Palade GE
    J Cell Biol; 1965 Jul; 26(1):263-91. PubMed ID: 5859021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic responses of the South American ornate horned frog (Ceratophrys ornata) to estivation.
    Groom DJ; Kuchel L; Richards JG
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Jan; 164(1):2-9. PubMed ID: 22902863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in body fluids of the cocooning fossorial frog Cyclorana australis in a seasonally dry environment.
    Reynolds SJ; Christian KA; Tracy CR; Hutley LB
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):348-54. PubMed ID: 21777688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometric Variations in the Skin Layers of Frogs: An Exploration Into Their Relation With Ecological Parameters in Leptodactylus (Anura, Leptodactylidae), With an Emphasis on the Eberth-Kastschenko Layer.
    Ponssa ML; Barrionuevo JS; Pucci Alcaide F; Pucci Alcaide A
    Anat Rec (Hoboken); 2017 Oct; 300(10):1895-1909. PubMed ID: 28681539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body wiping behaviors associated with cutaneous lipids in hylid tree frogs of Florida.
    Barbeau TR; Lillywhite HB
    J Exp Biol; 2005 Jun; 208(Pt 11):2147-56. PubMed ID: 15914658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma and brain angiotensin concentrations associated with water response behavior in the desert anuran, Scaphiopus couchii under natural conditions in the field.
    Johnson WE; Hillyard SD; Propper CR
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):377-81. PubMed ID: 20708705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of protein synthesis during metabolic depression in the Australian desert frog Neobatrachus centralis.
    Fuery CJ; Withers PC; Hobbs AA; Guppy M
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Feb; 119(2):469-76. PubMed ID: 11248990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of density and predation on Scaphiopus couchi tadpoles in desert ponds.
    Newman RA
    Oecologia; 1987 Jan; 71(2):301-307. PubMed ID: 28312260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cutaneous water loss and sphingolipids in the stratum corneum of house sparrows, Passer domesticus L., from desert and mesic environments as determined by reversed phase high-performance liquid chromatography coupled with atmospheric pressure photospray ionization mass spectrometry.
    Muñoz-Garcia A; Ro J; Brown JC; Williams JB
    J Exp Biol; 2008 Feb; 211(Pt 3):447-58. PubMed ID: 18204000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.