These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6026724)

  • 1. [On the mechanism of lactate formation in swine erythrocytes under the effect of various substrates].
    Reinauer H; Jansen W; Bruns FH
    Blut; 1967 Jun; 15(3):133-41. PubMed ID: 6026724
    [No Abstract]   [Full Text] [Related]  

  • 2. [GLYCOLYSIS OF INCUBATED ERYTHROCYTES IN VITRO AND THE EFFECT ON THIS OF THE SUBSTRATES GLUCOSE AND ADENOSINE].
    QUARTODIPALO FM; SPINNLER HR; MOMBELLI L; BERTOLINI AM
    Acta Gerontol (Milano); 1963; 13():181-7. PubMed ID: 14106831
    [No Abstract]   [Full Text] [Related]  

  • 3. [GLYCOLYSIS OF ERYTHROCYTES OF AGED SUBJECTS].
    BERTOLINI AM; QUARTODIPALO FM; MOMBELLI L; SPINNLER HR
    G Gerontol; 1964 May; 12():603-7. PubMed ID: 14195473
    [No Abstract]   [Full Text] [Related]  

  • 4. FLUORIDE INHIBITION OF SODIUM EXTRUSION FROM SWINE ERYTHROCYTES AND ITS METABOLIS CORRELATES.
    KIRSCHNER LB
    Arch Biochem Biophys; 1964 Jul; 106():57-64. PubMed ID: 14217205
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 6. [Influence of human growth on the glycolysis of human red cells in vitro].
    Ludescher E; Hohenwallner W
    Clin Chim Acta; 1969 Jun; 24(3):423-30. PubMed ID: 4239825
    [No Abstract]   [Full Text] [Related]  

  • 7. [Nucleotide synthesis and carbohydrate metabolism in hemolysates].
    Klein W; Beretta E
    Experientia; 1966 Mar; 22(3):139-40. PubMed ID: 5959915
    [No Abstract]   [Full Text] [Related]  

  • 8. Cow red blood cells. I. Effect of purines, pyrimidines, and nucleosides in bovine red cell glycolysis.
    Seider MJ; Kim HD
    Am J Physiol; 1979 May; 236(5):C255-61. PubMed ID: 155991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between pH and aerobic glycolysis in human and canine erythrocytes.
    Burr MJ
    Comp Biochem Physiol B; 1972 Apr; 41(4):687-94. PubMed ID: 4338066
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on erythrocyte glycolysis. VI. Control of glycolysis by ATP level in human erythrocytes.
    Saito T; Minakami S
    J Biochem; 1967 Feb; 61(2):211-9. PubMed ID: 6058200
    [No Abstract]   [Full Text] [Related]  

  • 11. Fluoride inhibition of erythrocyte metabolism as a function of cellular P.
    Omachi A; Deuticke B; Gerlach E
    Biochim Biophys Acta; 1966 Aug; 124(2):421-3. PubMed ID: 5968915
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of inosine and glucose as a substrate for energy metabolism in isolated rat-thymus nuclei.
    Konings AW
    Biochim Biophys Acta; 1969 Sep; 189(1):125-8. PubMed ID: 5822418
    [No Abstract]   [Full Text] [Related]  

  • 13. [Limiting factors of methemoglobin formation through phenylhydroxylamine in the erythrocytes of cattle, sheep and swine].
    Wagner J; Burger A
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):138-51. PubMed ID: 4383121
    [No Abstract]   [Full Text] [Related]  

  • 14. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration.
    Lichtman MA; Miller DR
    J Lab Clin Med; 1970 Aug; 76(2):267-79. PubMed ID: 5434006
    [No Abstract]   [Full Text] [Related]  

  • 15. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes.
    Henderson JF; Zombor G; Burridge PW; Barankiewicz G; Smith CM
    Can J Biochem; 1979 Jun; 57(6):873-8. PubMed ID: 476524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ATP-ADP- AND LACTATE-PYRUVATE RATIOS IN AEROBIC AND ANEROBIC GLYCOLYSIS IN RABBIT ERYTHROCYTES].
    GERCKEN G; VON WICHERT ; ISSELHARD W
    Biochem Z; 1964 Mar; 339():362-73. PubMed ID: 14236692
    [No Abstract]   [Full Text] [Related]  

  • 17. Potassium transport and nucleoside metabolism in human red cells.
    Whittam R; Wiley JS
    J Physiol; 1967 Aug; 191(3):633-52. PubMed ID: 6051796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and isolation on a large scale of guanylate kinase from human erythrocytes. Effects of monophosphate nucleotides of purine analogs.
    Agarwal RP; Scholar EM; Agarwal KC; Parks RE
    Biochem Pharmacol; 1971 Jul; 20(7):1341-54. PubMed ID: 5163075
    [No Abstract]   [Full Text] [Related]  

  • 19. [The effect of the inorganic phosphate concentration on the adenine nucleotide content and the rate of glycolysis in rabbit erythrocytes].
    Gercken G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):400-7. PubMed ID: 4176835
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationship of solute permeability to erythrocyte glycolysis.
    Tsuboi KK; Fukunaga K
    Biochim Biophys Acta; 1970; 196(2):215-20. PubMed ID: 5414304
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.