These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6026724)

  • 21. Cow red blood cells. III. Postnatal adaptation of energy metabolism in the calf red blood cells.
    Kim HD
    Biochim Biophys Acta; 1979 Nov; 588(1):44-54. PubMed ID: 497245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on erythrocyte glycolysis. VII. Changes of glycolytic intermediates in erythrocytes during storage in acid-citrate-dextrose medium.
    Oyama H; Minakami S; Yoshikawa H
    J Biochem; 1968 Feb; 63(2):254-60. PubMed ID: 4299378
    [No Abstract]   [Full Text] [Related]  

  • 23. The interaction of thrombin and nucleotides: effects on glycolysis in human platelets.
    Zieve PD; Schmukler M
    Biochim Biophys Acta; 1973 Jul; 313(2):350-5. PubMed ID: 4741588
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of adenosine on fructose 2,6-bisphosphate levels and glucose metabolization by chicken erythrocytes.
    Espinet C; Bartrons R; Carreras J
    FEBS Lett; 1989 Nov; 258(1):143-6. PubMed ID: 2591530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effect of temperature on the regulation of glycolysis in erythrocytes of man and rat].
    Hasart E; Jacobasch G; Rapoport S
    Acta Biol Med Ger; 1970; 24(6):725-43. PubMed ID: 4249239
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on the energy metabolism of opossum (Didelphis Virginiana) erythrocytes. I. Utilization of carbohydrates and purine nucleosides.
    Bethlenfalvay NC; Lima JE; Waldrup T
    J Cell Physiol; 1984 Jul; 120(1):69-74. PubMed ID: 6429161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on glycolysis in vitro: role of glucose phosphorylation and phosphofructokinase activity on total velocity.
    Meléndez-Hevia E; Siverio JM; Pérez JA
    Int J Biochem; 1984; 16(5):469-76. PubMed ID: 6233195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of inosine triphosphate and of 14C-labeled 2,6-diaminopurine ribonucleoside di- and triphosphates in stored human erythrocytes.
    Blair DG; Dommasch M
    Transfusion; 1969; 9(4):198-202. PubMed ID: 5801191
    [No Abstract]   [Full Text] [Related]  

  • 29. Steroidogenic and glycolytic responses to nucleotides, nucleosides and steroids in rodent adrenal glands: opposing, species-dependent effects of cyclic GMP.
    Hum WT; Barta-Bartova A; Birmingham MK
    J Endocrinol; 1981 Dec; 91(3):447-56. PubMed ID: 6276485
    [No Abstract]   [Full Text] [Related]  

  • 30. Regulation of the energy metabolism of Plasmodium berghei.
    Jacobasch G; Buckwitz D; Gerth C; Thamm R
    Biomed Biochim Acta; 1990; 49(2-3):S289-94. PubMed ID: 2143651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of carbon dioxide and H + on canine erythrocyte glycolysis.
    Zborowska-Sluis DT; Klassen GA
    Respir Physiol; 1972 May; 15(1):96-103. PubMed ID: 5056757
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on adenine and adenosine metabolism by intact human erythrocytes using high performance liquid chromatography.
    Dean BM; Perrett D
    Biochim Biophys Acta; 1976 Jun; 437(1):1-5. PubMed ID: 949498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The adenosine triphosphate content and lactic acid production of guinea-pig skin after mild heat damage.
    Carney SA; Hall M; Ricketts CR
    Br J Dermatol; 1976 Mar; 94(3):291-4. PubMed ID: 1252359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle.
    Cerretelli P; Di Prampero PE; Ambrosoli G
    Am J Physiol; 1972 Apr; 222(4):1021-6. PubMed ID: 4537281
    [No Abstract]   [Full Text] [Related]  

  • 35. Regulation of glycolysis in human red cells.
    Yoshikawa H; Minakami S
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):357-75. PubMed ID: 4176832
    [No Abstract]   [Full Text] [Related]  

  • 36. Reduced red cell glycolysis, 2, 3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia.
    Lichtman MA; Miller DR; Cohen J; Waterhouse C
    Ann Intern Med; 1971 Apr; 74(4):562-8. PubMed ID: 4994546
    [No Abstract]   [Full Text] [Related]  

  • 37. Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate.
    Young JD; Paterson AR; Henderson JF
    Biochim Biophys Acta; 1985 Oct; 842(2-3):214-24. PubMed ID: 3902093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Influencing by phenylhydroxylamine of the pentosephosphate pathway and glycolysis in erythrocytes during methemoglobin formation].
    Burger A; Wagner J; Uehleke H; Götz E
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(3):333-47. PubMed ID: 4385221
    [No Abstract]   [Full Text] [Related]  

  • 39. Preparation of 32P-labeled nucleotides. II. Deoxyribonucleotides and xanthosine triphosphate.
    Vanderheiden BS
    Anal Biochem; 1968 Feb; 22(2):304-10. PubMed ID: 5641851
    [No Abstract]   [Full Text] [Related]  

  • 40. Effect of polyethylene glycol on the in vitro production of L-lactate by rat liver under near physiological conditions.
    Rodríguez-Fernández JL; Frías I; Pérez JA; Siverio JM
    Biochem Int; 1987 Mar; 14(3):539-45. PubMed ID: 3593389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.