These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6027253)

  • 1. Oxidative phosphorylation in fractionated bacterial systems. XXVII. The nature of nonheme iron in Mycobacterium phlei.
    Kurup CK; Brodie AF
    J Biol Chem; 1967 Jun; 242(12):2909-16. PubMed ID: 6027253
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative phosphorylation in fractionated bacterial systems. XXIX. The involvement of nonheme iron in the respiratory pathways of Mycobacterium phlei.
    Kurup CK; Brodie AF
    J Biol Chem; 1967 Dec; 242(24):5830-7. PubMed ID: 4319674
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidative phosphorylation in fractionated bacterial systems. 18. Phosphorylation coupled to different segments of the respiratory chains of Mycobacterium phlei.
    Asano A; Brodie AF
    J Biol Chem; 1965 Oct; 240(10):4002-10. PubMed ID: 4158502
    [No Abstract]   [Full Text] [Related]  

  • 4. Flavoproteins of the mitochondrial respiratory chain.
    Chance B; Ernster L; Garland PB; Lee CP; Light PA; Ohnishi T; Ragan CI; Wong D
    Proc Natl Acad Sci U S A; 1967 May; 57(5):1498-505. PubMed ID: 4292153
    [No Abstract]   [Full Text] [Related]  

  • 5. Site of action of nonheme iron in the malate (flavine adenine dinucleotide) pathway of Mycobacterium phlei.
    Tyagi AK; Reddy TL; Venkitasubramanian TA
    Can J Microbiol; 1976 Jul; 22(7):1054-7. PubMed ID: 963613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative phosphorylation in fractionated bacterial systems. XLII. The effect of coupling factors on urea-treated particles from M. phlei.
    Higashi T; Bogin E; Brodie AF
    Arch Biochem Biophys; 1970 Feb; 136(2):331-6. PubMed ID: 4314106
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation in fractionated bacterial systems. XXV. Studies on the involvement of metal in Mycobacterium phlei.
    Kurup CK; Brodie AF
    J Biol Chem; 1967 Jan; 242(2):197-203. PubMed ID: 4959617
    [No Abstract]   [Full Text] [Related]  

  • 8. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles.
    Schatz G; Racker E
    J Biol Chem; 1966 Mar; 241(6):1429-38. PubMed ID: 4286911
    [No Abstract]   [Full Text] [Related]  

  • 9. Quinone restoration of coupled phosphorylation in Mycobacterium phlei.
    Phillips PG; Revsin B; Drell EG; Brodie AF
    Arch Biochem Biophys; 1970 Jul; 139(1):59-66. PubMed ID: 5471252
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative phosphorylation in fractionated bacterial systems. 43. Coupling factors associated with the NAD+ linked electron transport pathway.
    Bogin E; Higashi T; Brodie AF
    Arch Biochem Biophys; 1970 Feb; 136(2):337-51. PubMed ID: 4314107
    [No Abstract]   [Full Text] [Related]  

  • 11. A beef-heart cytochrome B dependent on nonheme iron for its reduction.
    Kirschbaum J; Wainio WW
    Biochim Biophys Acta; 1966 Jan; 113(1):27-32. PubMed ID: 5943571
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on oxidative phosphorylation. XVI. Sulfhydryl involvement in the energy-transfer pathway.
    Kurup CK; Sanadi DR
    Biochemistry; 1968 Dec; 7(12):4483-91. PubMed ID: 4302625
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation and properties of a protein synthesizing microsomal system from beef corneal epithelium.
    Matuk Y
    Can J Ophthalmol; 1969 Jan; 4(1):89-99. PubMed ID: 5766343
    [No Abstract]   [Full Text] [Related]  

  • 14. The inhibition of mitochondrial energized processes by fluorescein mercuric acetate.
    Lee MJ; Harris RA; Wakabayashi T; Green DE
    J Bioenerg; 1971 Feb; 2(1):13-31. PubMed ID: 5137336
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of sulfhydryl groups in the enzymatic synthesis of 1-ascorbic acid by liver microsomes.
    Kar NC; Ghos NC; Chatterjee GC
    Arch Biochem Biophys; 1965 Oct; 112(1):207-8. PubMed ID: 5865118
    [No Abstract]   [Full Text] [Related]  

  • 16. On the locus of action of Na + at site I of oxidative phosphorylation.
    Gómez-Puyou A; Sandoval F; De Gómez-Puyou MT; Chávez E; Pinto E
    J Bioenerg; 1972 Jun; 3(3):221-33. PubMed ID: 4340358
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of phospholipase A on the structure and functions of membrane vesicles from Mycobacterium phlei.
    Prasad R; Kalra VK; Brodie AF
    J Biol Chem; 1975 May; 250(10):3690-8. PubMed ID: 236299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of oxidative phosphorylation. X. The effect of cytochrome C on energy-linked processes in submitochondrial particles.
    Lenaz G; MacLennan DH
    J Biol Chem; 1966 Nov; 241(22):5260-5. PubMed ID: 4289050
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of trypsin and heat treatment on oxidative phosphorylation in Mycobacterium phlei.
    Bogin E; Higashi T; Brodie AF
    Biochem Biophys Res Commun; 1970 Nov; 41(4):995-1001. PubMed ID: 4320074
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanistic implications of Mg++, adenine nucleotide, and inhibitor effects on energy-linked reactions of submitochondrial particles.
    Mitchell RA; Hill RD; Boyer PD
    J Biol Chem; 1967 Apr; 242(8):1793-801. PubMed ID: 6024770
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.