These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6027267)

  • 1. The cochlear geometry as a frequency analyser.
    Naftalin L
    J Laryngol Otol; 1967 Jun; 81(6):619-31. PubMed ID: 6027267
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanics of the guinea pig colea.
    Johnstone BM; Taylor KJ; Boyle AJ
    J Acoust Soc Am; 1970 Feb; 47(2):504-9. PubMed ID: 5439649
    [No Abstract]   [Full Text] [Related]  

  • 3. Intracochlear potential recorded with micropipets. 3. Relation of cochlear microphonic potential to stapes velocity.
    Weiss TF; Peake WT; Sohmer HS
    J Acoust Soc Am; 1971 Aug; 50(2):602-15. PubMed ID: 5096499
    [No Abstract]   [Full Text] [Related]  

  • 4. [Mechanical transient distortions in the sound transmission system of the ear].
    Lerche E
    Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1970; 197(3):278-94. PubMed ID: 5501642
    [No Abstract]   [Full Text] [Related]  

  • 5. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the derivative relationship between stapes movement and cochlear microphonic.
    Dallos P; Durrant JD
    J Acoust Soc Am; 1972 Oct; 52(4):1263-5. PubMed ID: 4638041
    [No Abstract]   [Full Text] [Related]  

  • 7. Comment on "intracochlear potential recorded with micropipets. 3. Relation of cochlear microphonic potential to stapes velocity".
    Price GR
    J Acoust Soc Am; 1972 Jun; 51(6):2059-61. PubMed ID: 5045259
    [No Abstract]   [Full Text] [Related]  

  • 8. Middle ear muscle effects on cochlear responses to bone-conducted sound.
    Irvine DR; Wester KG
    Acta Physiol Scand; 1974 Aug; 91(4):482-96. PubMed ID: 4432760
    [No Abstract]   [Full Text] [Related]  

  • 9. An empirical bound on the compressibility of the cochlea.
    Shera CA; Zweig G
    J Acoust Soc Am; 1992 Sep; 92(3):1382-8. PubMed ID: 1401524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Theoretical development of the mechanism of sound wave propagation in the labyrinthine fluids].
    Smyrnakis E
    Rev Laryngol Otol Rhinol (Bord); 1972; 93(9):525-51. PubMed ID: 4657000
    [No Abstract]   [Full Text] [Related]  

  • 14. [Physiology of the cochlea].
    Ottoboni A; Pallestrini EA
    Minerva Otorinolaringol; 1970; 20(5):140-5. PubMed ID: 5514233
    [No Abstract]   [Full Text] [Related]  

  • 15. Structures that contribute to middle-ear admittance in chinchilla.
    Rosowski JJ; Ravicz ME; Songer JE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1287-311. PubMed ID: 16944166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal turn cochlear lesions following exposure to low-frequency noise.
    Fried MP; Dudek SE; Bohne BA
    Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol; 1976; 82(3 Pt 1):285-98. PubMed ID: 960396
    [No Abstract]   [Full Text] [Related]  

  • 17. [Functional integration of the systems acting in the cochlear micromechanics].
    Rossi G
    Acta Otorhinolaryngol Ital; 1995 Apr; 15(2):65-72. PubMed ID: 8928652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of middle ear mechanics and application to diseased and reconstructed ears.
    Merchant SN; Ravicz ME; Puria S; Voss SE; Whittemore KR; Peake WT; Rosowski JJ
    Am J Otol; 1997 Mar; 18(2):139-54. PubMed ID: 9093668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea?
    Voss SE; Rosowski JJ; Peake WT
    J Acoust Soc Am; 1996 Sep; 100(3):1602-16. PubMed ID: 8817890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase relations between the microphonic crista effect of the three semi-circular canals, the cochlear microphonics and the motion of the stapes.
    DE VRIES H; VROLIJK JM
    Acta Otolaryngol; 1953 Feb; 43(1):80-9. PubMed ID: 13040005
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.