These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 6029601)

  • 1. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species.
    Hatch MD; Slack CR; Johnson HS
    Biochem J; 1967 Feb; 102(2):417-22. PubMed ID: 6029601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation.
    Hatch MD; Slack CR
    Biochem J; 1966 Oct; 101(1):103-11. PubMed ID: 5971771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C4-dicarboxylic acid pathway of photosynthesis. Identification of intermediates and products and quantitative evidence for the route of carbon flow.
    Johnson HS; Hatch MD
    Biochem J; 1969 Aug; 114(1):127-34. PubMed ID: 5810044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C 4 -pathway of photosynthesis. Evidence for an intermediate pool of carbon dioxide and the identity of the donor C 4 -dicarboxylic acid.
    Hatch MD
    Biochem J; 1971 Nov; 125(2):425-32. PubMed ID: 5144745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses.
    Slack CR; Hatch MD
    Biochem J; 1967 Jun; 103(3):660-5. PubMed ID: 4292834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of the adenosine monophosphate inhibition of carbon dioxide fixation in photosynthetic and chemosynthetic autotrophs.
    Johnson EJ
    Arch Biochem Biophys; 1966 Apr; 114(1):178-83. PubMed ID: 5954698
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE-MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves.
    Hasunuma T; Harada K; Miyazawa S; Kondo A; Fukusaki E; Miyake C
    J Exp Bot; 2010 Feb; 61(4):1041-51. PubMed ID: 20026474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the proportions of early products of photosynthetic carbon fixation induced by TYMV infection.
    Bedbrook JR; Matthews RE
    Virology; 1972 Apr; 48(1):255-8. PubMed ID: 5017149
    [No Abstract]   [Full Text] [Related]  

  • 9. Ripening tomatoes: C14O2 uptake by green tomato fruit.
    Boe AA; Salunkhe DK
    Experientia; 1967 Sep; 23(9):779. PubMed ID: 6062910
    [No Abstract]   [Full Text] [Related]  

  • 10. Photosynthesis in Rhodospirillum rubrum. II. Photoheterotrophic carbon dioxide fixation.
    Anderson L; Fuller RC
    Plant Physiol; 1967 Apr; 42(4):491-6. PubMed ID: 6042358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration.
    Pinelli P; Loreto F
    J Exp Bot; 2003 Jul; 54(388):1761-9. PubMed ID: 12773522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 14CO2 assimilation of normal and chloroplast mutant leaves at different light intensities.
    Gyurján I; Keve T; Faludi-Dániel A; Anda S
    Acta Biol Acad Sci Hung; 1969; 20(3):325-34. PubMed ID: 5378894
    [No Abstract]   [Full Text] [Related]  

  • 13. Light compensation points and photorespiration.
    Meidner H
    Nature; 1970 Dec; 228(5278):1349. PubMed ID: 5488120
    [No Abstract]   [Full Text] [Related]  

  • 14. PRIMARY PRODUCTS OF PHOTOSYNTHESIS IN LEAVES OF CELERY.
    TRIP P; NELSON CD; KROTKOV G
    Arch Biochem Biophys; 1964 Nov; 108():359-61. PubMed ID: 14240593
    [No Abstract]   [Full Text] [Related]  

  • 15. Photosynthetic utilization of internal carbon dioxide by hollow-stemmed plants.
    Billings WD; Godfrey PJ
    Science; 1967 Oct; 158(3797):121-3. PubMed ID: 6054809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting processes in photosynthesis at saturating light intensities.
    Wareing PF; Khalifa MM; Treharne KJ
    Nature; 1968 Nov; 220(5166):453-7. PubMed ID: 5686156
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon dioxide signalling in plant leaves.
    Lüttge U
    C R Biol; 2007 May; 330(5):375-81. PubMed ID: 17531786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar.
    Lawson T; Oxborough K; Morison JI; Baker NR
    J Exp Bot; 2003 Jul; 54(388):1743-52. PubMed ID: 12773521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies on the intracellular distribution of enzymes and substrates in leaf cells. I. Intracellular transport of photosynthesis intermediates in steady-state photosynthesis and in the dark-light-dark cycle].
    Heber U; Santarius KA; Hudson MA; Hallier UW
    Z Naturforsch B; 1967 Nov; 22(11):1189-99. PubMed ID: 4384905
    [No Abstract]   [Full Text] [Related]  

  • 20. [Species-dependence of the pattern of plant photosynthetic rate response to light intensity transition from saturating to limiting one].
    Chen Y; Xu DQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):538-46. PubMed ID: 18349508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.