These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 6030196)

  • 1. Plasma ion concentration as a basis for an hypothesis regarding neuronal excitability changes during development.
    Skoglund S
    Acta Soc Med Ups; 1967; 72(1):76-84. PubMed ID: 6030196
    [No Abstract]   [Full Text] [Related]  

  • 2. Ionic content and membrane potentials of cortical neurons and glia.
    Grossman RG; Lynch L; Shires GT
    Neurology; 1968 Mar; 18(3):292. PubMed ID: 5690379
    [No Abstract]   [Full Text] [Related]  

  • 3. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of calcium currents in mouse ventral horn neurons by extracellular pH.
    Carlin KP
    Eur J Neurosci; 2005 Nov; 22(10):2655-60. PubMed ID: 16307608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of extracellular calcium on intrinsically bursting neurons in the entorhinal cortex of newborn rats: the computer modeling study].
    Sherozia MG; Egorov AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(5):517-20. PubMed ID: 19004312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes of transient potassium currents in large aspiny neurons in the neostriatum.
    Deng P; Pang Z; Zhang Y; Xu ZC
    Brain Res Dev Brain Res; 2004 Oct; 153(1):97-107. PubMed ID: 15464222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride.
    Zhu L; Lovinger D; Delpire E
    J Neurophysiol; 2005 Mar; 93(3):1557-68. PubMed ID: 15469961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent enhancement of neuron-glia signaling mediated by increased extracellular K+ accompanying long-term synaptic potentiation.
    Ge WP; Duan S
    J Neurophysiol; 2007 Mar; 97(3):2564-9. PubMed ID: 17035364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative examination of dynamic interneuronal coupling via single-spike extracellular potassium ion transients.
    Lebovitz RM
    J Theor Biol; 1996 May; 180(1):11-25. PubMed ID: 8763355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of extracellular potassium in central respiratory control studied in the isolated brainstem-spinal cord preparation of the neonatal rat.
    Okada Y; Kuwana S; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol Neurobiol; 2005 Mar; 146(1):21-32. PubMed ID: 15733776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability.
    Shahidullah M; Santarelli LC; Wen H; Levitan IB
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16454-9. PubMed ID: 16263935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons' and glia role in electrocephalogram--evoked potential (EEG-EP) dynamics.
    Turbes CC
    Biomed Sci Instrum; 1996; 32():107-12. PubMed ID: 8672656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
    Florence G; Dahlem MA; Almeida AC; Bassani JW; Kurths J
    J Theor Biol; 2009 May; 258(2):219-28. PubMed ID: 19490858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Stimulation and excitability in functional syndromes].
    Caspers H; Speckmann EJ
    Verh Dtsch Ges Inn Med; 1976; 82 Pt 1():542-9. PubMed ID: 18853
    [No Abstract]   [Full Text] [Related]  

  • 18. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphetamine elicited potential changes in vertebrate and invertebrate central neurons.
    Tsai MC; Chen YH; Huang SS
    Acta Biol Hung; 2000; 51(2-4):275-86. PubMed ID: 11034152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
    Prole DL; Lima PA; Marrion NV
    J Gen Physiol; 2003 Dec; 122(6):775-93. PubMed ID: 14638935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.