These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6030479)

  • 1. Evaluation of the suitability of butadiene-acrylonitrile rubbers as closures for parenteral solutions.
    Shanker J; Gibaldi M; Kanig JL; Parker AP; Lachman L
    J Pharm Sci; 1967 Jan; 56(1):100-8. PubMed ID: 6030479
    [No Abstract]   [Full Text] [Related]  

  • 2. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.
    Chronska K; Przepiorkowska A
    J Hazard Mater; 2008 Mar; 151(2-3):348-55. PubMed ID: 17629616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.
    Przepiórkowska A; Chrońska K; Zaborski M
    J Hazard Mater; 2007 Mar; 141(1):252-7. PubMed ID: 16942836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).
    Suresh SS; Mohanty S; Nayak SK
    Waste Manag Res; 2018 Jun; 36(6):495-504. PubMed ID: 29726308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Reprocessable and Recyclable Acrylonitrile-Butadiene Rubber Based on Dynamic Oxime-Carbamate Bond.
    Wang W; Song Q; Liu Q; Zheng H; Li C; Yan Y; Zhang Q
    Macromol Rapid Commun; 2019 Sep; 40(17):e1800733. PubMed ID: 30817055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The migration of acrylonitrile from acrylonitrile/butadiene/styrene polymers into food-simulating liquids.
    Lickly TD; Markham DA; Rainey ML
    Food Chem Toxicol; 1991 Jan; 29(1):25-9. PubMed ID: 1999304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement.
    Hsieh HC; Chen JY; Lee WY; Bera D; Chen WC
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29210500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal ion-selective membrane prepared by surface molecular imprinting.
    Araki K; Maruyama T; Kamiya N; Goto M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Apr; 818(2):141-5. PubMed ID: 15734153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic degradation of butadiene, styrene and their copolymers.
    Sathiskumar PS; Madras G
    Ultrason Sonochem; 2012 May; 19(3):503-8. PubMed ID: 21986515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber.
    Keerthika B; Umayavalli M; Jeyalalitha T; Krishnaveni N
    Ecotoxicol Environ Saf; 2016 Aug; 130():1-3. PubMed ID: 27060197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of the components of styrene polymers: polystyrene, acrylonitrile-butadiene-styrene (ABS) and styrene-butadiene-rubber (SBR). Reactants and additives.
    Fishbein L
    Prog Clin Biol Res; 1984; 141():239-62. PubMed ID: 6371825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barrierity of hydrogenated butadiene-acrylonitrile rubber and butyl rubber after exposure to organic solvents.
    Krzemińska S; Rzymski WM
    Int J Occup Saf Ergon; 2011; 17(1):41-7. PubMed ID: 21375953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenicity of rubber vulcanization gases in Salmonella typhimurium.
    Hedenstedt A; Ramel C; Wachtmeister CA
    J Toxicol Environ Health; 1981; 8(5-6):805-14. PubMed ID: 7040692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and chemical aspects of long-term biodeterioration of some polymers and composites.
    Lugauskas A; Prosychevas I; Levinskaite L; Jaskelevicius B
    Environ Toxicol; 2004 Aug; 19(4):318-28. PubMed ID: 15269902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylonitrile, acrylic and modacrylic fibres, and acrylonitrile-butadiene-styrene and styrene-acrylonitrile copolymers.
    IARC Monogr Eval Carcinog Risk Chem Hum; 1979 Feb; 19():73-113. PubMed ID: 374237
    [No Abstract]   [Full Text] [Related]  

  • 16. Compositional heterogeneity of butadiene-acrylonitrile copolymers prepared in emulsion at 5 degrees C.
    EMBREE WH; MITCHELL JM; WILLIAMS HL
    Can J Chem; 1951 Mar; 29(3):253-69. PubMed ID: 14821858
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthetic rubbers; their chemistry and dermatological aspects.
    MORRIS GE
    AMA Arch Ind Hyg Occup Med; 1953 Dec; 8(6):540-6. PubMed ID: 13103828
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.
    Hirayama D; Saron C
    Waste Manag Res; 2015 Jun; 33(6):543-9. PubMed ID: 26022280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of alkylbenzene sulfonate surfactants leaching from an acrylonitrile butadiene rubber as novel inhibitors of calcineurin activity.
    Ito N; Shibuguchi N; Ishikawa R; Tanaka S; Tokita Y; Nakajima-Shimada J; Hosaka K
    Biosci Biotechnol Biochem; 2013; 77(5):954-60. PubMed ID: 23649261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butadiene production process overview.
    White WC
    Chem Biol Interact; 2007 Mar; 166(1-3):10-4. PubMed ID: 17324391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.