These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 6032203)

  • 1. The oxygen consumption of mammalian non-myelinated nerve fibres at rest and during activity.
    Ritchie JM
    J Physiol; 1967 Feb; 188(3):309-29. PubMed ID: 6032203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence on external cations of the oxygen consumption of mammalian non-myelinated fibres at rest and during activity.
    Rang HP; Ritchie JM
    J Physiol; 1968 May; 196(1):163-81. PubMed ID: 5653883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres.
    Howarth JV; Keynes RD; Ritchie JM
    J Physiol; 1968 Feb; 194(3):745-93. PubMed ID: 5636997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ionic content of mammalian non-myelinated nerve fibres and its alteration as a result of electrical activity.
    Rang HP; Ritchie JM
    J Physiol; 1968 May; 196(1):223-36. PubMed ID: 5659847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observations on the mechanism for the active extrusion of lithium in mammalian non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1980 Jul; 304():123-34. PubMed ID: 7441529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations.
    Rang HP; Ritchie JM
    J Physiol; 1968 May; 196(1):183-221. PubMed ID: 5653884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic componen of the sodium pump in mammalian non-myelinated nerve fibres.
    den Hertog A; Ritchie JM
    J Physiol; 1969 Oct; 204(3):523-38. PubMed ID: 5824103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of inorganic phosphate during activity in mammalian non-myelinated nerve fibres.
    Maire JC; Straub RW
    J Physiol; 1980 Jul; 304():135-43. PubMed ID: 7441530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption and phosphate efflux in mammalian non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1980 Jul; 304():109-21. PubMed ID: 7441528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the control of glycogenolysis in mammalian nervous tissue by calcium.
    Landowne D; Ritchie JM
    J Physiol; 1971 Jan; 212(2):503-17. PubMed ID: 4323308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The movements of labelled ions in mammalian non-myelinated nerve fibres.
    Keynes RD; Ritchie JM
    J Physiol; 1965 Jul; 179(2):333-67. PubMed ID: 5853895
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity.
    Ritchie JM; Straub RW
    J Physiol; 1979 Feb; 287():315-27. PubMed ID: 430413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity.
    Robert A; Jirounek P
    J Neurophysiol; 1994 Dec; 72(6):2570-9. PubMed ID: 7897474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-dependent influx of orthophosphate in mammalian non-myelinated nerve.
    Anner B; Ferrero J; Jirounek P; Jones GJ; Salamin A; Straub RW
    J Physiol; 1976 Sep; 260(3):667-86. PubMed ID: 978572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of lithium on excitable cell membranes. On the mechanism of inhibition of the sodium pump of non-myelinated nerve fibres of the rat.
    Ploeger EJ
    Eur J Pharmacol; 1974 Mar; 25(3):316-21. PubMed ID: 4827857
    [No Abstract]   [Full Text] [Related]  

  • 16. Optical studies on the kinetics of the sodium pump in mammalian non-myelinated nerve fibres.
    Landowne D; Ritchie JM
    J Physiol; 1971 Jan; 212(2):483-502. PubMed ID: 4251291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The movement of potassium ions during electrical activity, and the kinetics of the recovery process, in the non-myelinated fibres of the garfish olfactory nerve.
    Ritchie JM; Straub RW
    J Physiol; 1975 Jul; 249(2):327-48. PubMed ID: 240927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of acetylcholine release from parasympathetic nerves.
    Paton WD; Vizi ES; Zar MA
    J Physiol; 1971 Jul; 215(3):819-48. PubMed ID: 4253676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in efflux of inorganic phosphate during electrical activity in small non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1978 Jan; 274():539-48. PubMed ID: 625007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some further observations on the electrogenic sodium pump in non-myelinated nerve fibres.
    den Hertog A
    J Physiol; 1973 Jun; 231(3):493-509. PubMed ID: 4783094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.