These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6032845)

  • 1. Intramitochondrial pH and intra-extramitochondrial pH gradient of beef heart mitochondria in various functional states.
    Addanki S; Cahill FD; Sotos JF
    Nature; 1967 Apr; 214(5086):400-2. PubMed ID: 6032845
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++.
    Addanki A; Cahill FD; Sotos JF
    J Biol Chem; 1968 May; 243(9):2337-48. PubMed ID: 5648435
    [No Abstract]   [Full Text] [Related]  

  • 3. Passive transport of 5,5-dimethyl-2, 4-oxazolidinedione into beef heart mitochondria.
    Addanki S; Cahill FD; Sotos JF
    Science; 1967 Mar; 155(3770):1678-9. PubMed ID: 6020290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliability of the quantitation of intramitochondrial pH and pH gradient of heart mitochondria.
    Addanki S; Cahill FD; Sotos JF
    Anal Biochem; 1968 Oct; 25(1):17-29. PubMed ID: 5704739
    [No Abstract]   [Full Text] [Related]  

  • 5. Observations on intramitochondrial pH and ion transport by the 5,5-dimethyl 2,4-oxazolidinedione (DMO) method.
    Addanki S; Sotos JF
    Ann N Y Acad Sci; 1969 Oct; 147(19):756-804. PubMed ID: 5261233
    [No Abstract]   [Full Text] [Related]  

  • 6. The structure and function of heart muscle mitochondria.
    Brierley GP
    Tex Rep Biol Med; 1964 Dec; 22():Suppl 1:823-35. PubMed ID: 4284087
    [No Abstract]   [Full Text] [Related]  

  • 7. Substrate transformations dependent on respiratory states of mitochondria. Functional status and metabolic changes in rabbit heart mitochondria during pyruvate oxidation.
    Schäfer G; Balde P; Lamprecht W
    Nature; 1967 Apr; 214(5083):20-3. PubMed ID: 6033333
    [No Abstract]   [Full Text] [Related]  

  • 8. Intramitochondrial pH changes in cation accumulation.
    Chance B; Mela L
    Proc Natl Acad Sci U S A; 1966 May; 55(5):1243-51. PubMed ID: 5225522
    [No Abstract]   [Full Text] [Related]  

  • 9. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria.
    Ozawa T
    J Biochem; 1969 May; 65(5):679-91. PubMed ID: 5806963
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of intramitochondrial pH in the energetics and regulation of mitochondrial oxidative phosphorylation.
    Greenbaum NL; Wilson DF
    Biochim Biophys Acta; 1991 Jun; 1058(2):113-20. PubMed ID: 1646629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of rates of proton ejection and oxygen consumption within 300 msec after oxygenation of beef heart mitochondria.
    Penniston JT
    Biochemistry; 1973 Feb; 12(4):650-5. PubMed ID: 4691510
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the role of Mg 2+ and the Mg 2+ -stimulated adenosine triphosphatase in oxidative phosphorylation.
    Chao DL; Davis EJ
    Biochemistry; 1972 May; 11(10):1943-52. PubMed ID: 4260247
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium transport in mitochondria.
    Carafoli E; Rossi CS
    Adv Cytopharmacol; 1971 May; 1():209-27. PubMed ID: 4271024
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of pyrogallol on oxidative phosphorylation.
    Conyers RA; Hensley WJ; Montague MD
    Arch Int Pharmacodyn Ther; 1968 Jan; 171(1):179-84. PubMed ID: 5646013
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of deuterium oxide on respiratory-chain phosphorylation in sub-mitochondrial particles.
    Muraoka S; Slater EC
    Biochim Biophys Acta; 1968 Aug; 162(2):170-4. PubMed ID: 5682849
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of energy transformation of mitochondria. Analysis by a quantitative model.
    Bohnensack R
    Biochim Biophys Acta; 1981 Jan; 634(1):203-18. PubMed ID: 6451238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of structure and function in the oxidative phosphorylation system of submitochondrial particles.
    Inaba K; Hatase O; Goto N; Oda T
    Acta Med Okayama (1952); 1969 Aug; 23(4):323-35. PubMed ID: 4243564
    [No Abstract]   [Full Text] [Related]  

  • 19. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts.
    Babsky A; Doliba N; Doliba N; Savchenko A; Wehrli S; Osbakken M
    Exp Biol Med (Maywood); 2001 Jun; 226(6):543-51. PubMed ID: 11395924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cause of superstoichiometric Ca2+ uptake and H+ ejection in L1210 mouse ascites tumor mitochondria.
    Reynafarje B; Lehninger AL
    Biochem Biophys Res Commun; 1974 Mar; 57(1):286-92. PubMed ID: 4828189
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.