BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 6032988)

  • 1. Nature, intracellular distribution and formation of terpenoid quinones in maize and barley shoots.
    Griffiths WT; Threlfall DR; Goodwin TW
    Biochem J; 1967 May; 103(2):589-600. PubMed ID: 6032988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature, intracellular distribution and formation of terpenoid quinones in Euglena gracilis.
    Threlfall DR; Goodwin TW
    Biochem J; 1967 May; 103(2):573-88. PubMed ID: 5340369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the prenyl side chains of plastoquinone and related compounds in maize and barley shoots.
    Threlfall DR; Griffiths WT; Goodwin TW
    Biochem J; 1967 Jun; 103(3):831-51. PubMed ID: 6049407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of phytoquinones. Incorporation of L-[Me-14C,3H]methionine into terpenoid quinones and chromanols in maize shoots.
    Threlfall DR; Whistance GR; Goodwin TW
    Biochem J; 1968 Jan; 106(1):107-12. PubMed ID: 5721452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observations on the biosynthesis of phytoterpenoid quinone and chromanol nuclei.
    Whistance GR; Threlfall DR; Goodwin TW
    Biochem J; 1967 Oct; 105(1):145-54. PubMed ID: 6060446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on the nature and biosynthesis of terpenoid quinones and related compounds in tobacco shoots.
    Griffiths WT; Threlfall DR; Goodwin TW
    Eur J Biochem; 1968 Jun; 5(1):124-32. PubMed ID: 5660678
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic of lipoquinone and pigment synthesis in green Hordeum seedlings during an artificial day-night rhythm with a prolonged dark phase.
    Lichtenthaler HK; Grumbach KH
    Z Naturforsch C Biosci; 1974; 29C(9-10):532-40. PubMed ID: 4278158
    [No Abstract]   [Full Text] [Related]  

  • 9. [Phytochrome system and synthesis of lipoquinones in the plastids of etiolated hordeum seedlings].
    Lichtenthaler HK; Kleudgen HK
    Z Naturforsch C Biosci; 1975; 30(1):64-6. PubMed ID: 123393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquinone and related compounds. 28. Effect of the metabolites of alpha-tocopherol, phylloquinone and ubiquinone on the stability of rat-liver lysosomal membrane.
    Watanabe M; Negishi R; Imada I; Nishikawa M; Morimoto H
    Chem Pharm Bull (Tokyo); 1974 Jan; 22(1):183-8. PubMed ID: 4833372
    [No Abstract]   [Full Text] [Related]  

  • 11. The pattern and control of isoprenoid quinone and tocopherol metabolism in the germinating grain of wheat (Triticum vulgare).
    Hall GS; Laidman DL
    Biochem J; 1968 Jul; 108(3):475-82. PubMed ID: 5667257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquinone and related compounds. XXVI. The urinary metabolites of phylloquinone and alpha-tocopherol.
    Watanabe M; Toyoda M; Imada I; Morimoto H
    Chem Pharm Bull (Tokyo); 1974 Jan; 22(1):176-82. PubMed ID: 4833371
    [No Abstract]   [Full Text] [Related]  

  • 13. [Distribution and biosynthesis of polyprenoid quinones in plants].
    Jerzmanowski A
    Postepy Biochem; 1972; 18(2):273-84. PubMed ID: 5051440
    [No Abstract]   [Full Text] [Related]  

  • 14. The taxonomic distribution of plastoquinone and tocopherolquinone and their intracellular distribution in leaves of Vicia faba L.
    Bucke C; Leech RM; Hallaway M; Morton RA
    Biochim Biophys Acta; 1966 Jan; 112(1):19-34. PubMed ID: 5947894
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of phytoquinones. Stereospecific biosynthesis of the polyprenyl side chains of terpenoid quinones and chromanols in maize shoots.
    Dada OA; Threlfall DR; Whistance GR
    Eur J Biochem; 1968 Apr; 4(3):329-33. PubMed ID: 5653765
    [No Abstract]   [Full Text] [Related]  

  • 16. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation.
    Eugeni Piller L; Besagni C; Ksas B; Rumeau D; Bréhélin C; Glauser G; Kessler F; Havaux M
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14354-9. PubMed ID: 21844348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of ferricyanide reduction in acetone-extracted chloroplasts by beta and gamma tocopherol quinones.
    HENNINGER MD; DILLEY RA; CRANE FL
    Biochem Biophys Res Commun; 1963 Feb; 10():237-42. PubMed ID: 13953779
    [No Abstract]   [Full Text] [Related]  

  • 18. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels.
    Hunter CT; Saunders JW; Magallanes-Lundback M; Christensen SA; Willett D; Stinard PS; Li QB; Lee K; DellaPenna D; Koch KE
    Plant J; 2018 Mar; 93(5):799-813. PubMed ID: 29315977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chloroplast ABC1-like kinase regulates vitamin E metabolism in Arabidopsis.
    Martinis J; Glauser G; Valimareanu S; Kessler F
    Plant Physiol; 2013 Jun; 162(2):652-62. PubMed ID: 23632854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence, biosynthesis and function of isoprenoid quinones.
    Nowicka B; Kruk J
    Biochim Biophys Acta; 2010 Sep; 1797(9):1587-605. PubMed ID: 20599680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.