BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 6032988)

  • 61. Biosynthesis of phytoquinones: utilization of homogentisic acid by maize shoots for the biosynthesis of plastoquinone.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Sep; 109(3):482-3. PubMed ID: 5685885
    [No Abstract]   [Full Text] [Related]  

  • 62. Synthesis of plastoquinone-9 and phytylplastoquinone from homogentisate in lettuce chloroplasts.
    Hutson KG; Threlfall DR
    Biochim Biophys Acta; 1980 Nov; 632(4):630-48. PubMed ID: 7002223
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Gas chromatography-mass spectrometry analysis of vitamin E and its oxidation products.
    Liebler DC; Burr JA; Philips L; Ham AJ
    Anal Biochem; 1996 Apr; 236(1):27-34. PubMed ID: 8619492
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electron flow through plastoquinone and cytochromes b6 and f in chloroplasts.
    Velthuys BR
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2765-9. PubMed ID: 288064
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nature and distribution of terpene quinones.
    Wiss O; Gloor U
    Biochem J; 1969 Jul; 113(3):21P. PubMed ID: 5807187
    [No Abstract]   [Full Text] [Related]  

  • 66. Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain.
    Diepenbrock CH; Kandianis CB; Lipka AE; Magallanes-Lundback M; Vaillancourt B; Góngora-Castillo E; Wallace JG; Cepela J; Mesberg A; Bradbury PJ; Ilut DC; Mateos-Hernandez M; Hamilton J; Owens BF; Tiede T; Buckler ES; Rocheford T; Buell CR; Gore MA; DellaPenna D
    Plant Cell; 2017 Oct; 29(10):2374-2392. PubMed ID: 28970338
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K₁) in chloroplasts.
    Furt F; Oostende Cv; Widhalm JR; Dale MA; Wertz J; Basset GJ
    Plant J; 2010 Oct; 64(1):38-46. PubMed ID: 20626653
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protein phosphorylation and excitation energy distribution in normal intermittent-light-grown, and a chlorophyll b-less mutant of barley.
    Haworth P; Kyle DJ; Arntzen CJ
    Arch Biochem Biophys; 1982 Oct; 218(1):199-206. PubMed ID: 7149726
    [No Abstract]   [Full Text] [Related]  

  • 69. Synthesis of alpha-tocopherolquinone by the rat and its reduction by mitochondria.
    Hughes PE; Tove SB
    J Biol Chem; 1980 Aug; 255(15):7095-7. PubMed ID: 7391070
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Studies on vitamin E. 8. Vitamin E, ubiquinone and ubichromenol in the rabbit.
    GREEN J; DIPLOCK AT; BUNYAN J; EDWIN EE
    Biochem J; 1961 Apr; 79(1):108-11. PubMed ID: 13708175
    [No Abstract]   [Full Text] [Related]  

  • 71. The significance of selenium and vitamin E in nutrition. Ubiquinone, plastoquinone and related substances.
    BARNES MM; MORTON RA
    Proc Nutr Soc; 1962; 21():186-95. PubMed ID: 13865102
    [No Abstract]   [Full Text] [Related]  

  • 72. Plastoquinol as a singlet oxygen scavenger in photosystem II.
    Kruk J; Trebst A
    Biochim Biophys Acta; 2008 Feb; 1777(2):154-62. PubMed ID: 18005659
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Incorporation of (14)CO 2 in prenylquinones of Chlorella pyrenoidosa.
    Grumbach KH; Lichtenthaler HK
    Planta; 1978 Jan; 141(3):253-8. PubMed ID: 24414869
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of light on dark carboxylation reactions in etiolated barley leaves.
    HALL DO; HUFFAKER RC; SHANNON LM; WALLACE A
    Biochim Biophys Acta; 1959 Oct; 35():540-2. PubMed ID: 14399022
    [No Abstract]   [Full Text] [Related]  

  • 75. The subcellular distribution and biosynthesis of castaprenols and plastoquinone in the leaves of Aesculus hippocastanum.
    Wellburn AR; Hemming FW
    Biochem J; 1967 Jul; 104(1):173-7. PubMed ID: 6068175
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ubiquinone and related compounds. XXVII. Synthesis of urinary metabolites of phylloquinone and alpha-tocopherol.
    Watanabe M; Kawada M; Nishikawa M; Imada I; Morimoto H
    Chem Pharm Bull (Tokyo); 1974 Mar; 22(3):566-75. PubMed ID: 4425073
    [No Abstract]   [Full Text] [Related]  

  • 77. Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis.
    Shimada H; Ohno R; Shibata M; Ikegami I; Onai K; Ohto MA; Takamiya K
    Plant J; 2005 Feb; 41(4):627-37. PubMed ID: 15686525
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Studies on electron transfer systems in the marine diatom Phaeodactylum tricornutum. II. Identification and determination of quinones, cytochromes, and flavins.
    Shimazaki K; Takamya K; Nishimura M
    J Biochem; 1978 Jun; 83(6):1639-42. PubMed ID: 670158
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phylloquinone in photosystem I: are quinones the secondary electron acceptors in all types of photosynthetic reaction centers?
    Hauska G
    Trends Biochem Sci; 1988 Nov; 13(11):415-6. PubMed ID: 3075361
    [No Abstract]   [Full Text] [Related]  

  • 80. UBIQUINONE-50 AND PLASTOQUINONE-45 IN PLANT TISSUE CULTURES OF PAUL'S SCARLET ROSE.
    THRELFALL DR; GOODWIN TW
    Biochim Biophys Acta; 1963 Nov; 78():532-3. PubMed ID: 14088784
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.