These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6033603)

  • 1. Kinetic analysis of the oxidation of palmitate-1-14C in man during prolonged heavy muscular exercise.
    Havel RJ; Ekelund LG; Holmgren A
    J Lipid Res; 1967 Jul; 8(4):366-73. PubMed ID: 6033603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelations in the oxidative metabolism of free fatty acids, glucose, and glycerol in normal and hyperlipemic patients. A compartmental model.
    Malmendier CL; Delcroix C; Berman M
    J Clin Invest; 1974 Aug; 54(2):461-76. PubMed ID: 4527190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative aspects of free fatty acid metabolism in the fasted rat.
    Baker N; Schotz MC
    J Lipid Res; 1967 Nov; 8(6):646-60. PubMed ID: 6057493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14.
    HAVEL RJ; NAIMARK A; BORCHGREVINK CF
    J Clin Invest; 1963 Jul; 42(7):1054-63. PubMed ID: 13961067
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise.
    Martin WH; Dalsky GP; Hurley BF; Matthews DE; Bier DM; Hagberg JM; Rogers MA; King DS; Holloszy JO
    Am J Physiol; 1993 Nov; 265(5 Pt 1):E708-14. PubMed ID: 8238496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans.
    Turcotte LP; Richter EA; Kiens B
    Am J Physiol; 1992 Jun; 262(6 Pt 1):E791-9. PubMed ID: 1319676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M; Lopaschuk GD
    J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glucose ingestion on the metabolism of free fatty acids in human subjects.
    Waterhouse C; Baker N; Rostami H
    J Lipid Res; 1969 Sep; 10(5):487-94. PubMed ID: 5808823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways.
    Miller JC; Gnaedinger JM; Rapoport SI
    J Neurochem; 1987 Nov; 49(5):1507-14. PubMed ID: 2889801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of plasma free fatty acid and triglyceride metabolism in man.
    Eaton RP; Berman M; Steinberg D
    J Clin Invest; 1969 Aug; 48(8):1560-79. PubMed ID: 5796365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of free fatty acids by starved and pregnant sheep.
    Leat WM; Ford EJ
    Biochem J; 1966 Nov; 101(2):317-22. PubMed ID: 6007575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids.
    Weber JM; Brichon G; Zwingelstein G; McClelland G; Saucedo C; Weibel ER; Taylor CR
    J Exp Biol; 1996 Aug; 199(Pt 8):1667-74. PubMed ID: 8708574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and release of free fatty acids and other metabolites in the legs of exercising men.
    Havel RJ; Pernow B; Jones NL
    J Appl Physiol; 1967 Jul; 23(1):90-9. PubMed ID: 6028167
    [No Abstract]   [Full Text] [Related]  

  • 15. 14CO2 production is no adequate measure of [14C]fatty acid oxidation.
    Veerkamp JH; van Moerkerk TB; Glatz JF; Zuurveld JG; Jacobs AE; Wagenmakers AJ
    Biochem Med Metab Biol; 1986 Jun; 35(3):248-59. PubMed ID: 3087394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of fatty acid and glucose oxidation by cultured heart cells.
    Rosenthal MD; Warshaw JB
    J Cell Biol; 1973 Aug; 58(2):332-9. PubMed ID: 4738103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for evaluation of fatty acid metabolism for man during prolonged exercise.
    Young DR; Shapira J; Forrest R; Adachi RR; Lim R; Pelligra R
    J Appl Physiol; 1967 Nov; 23(5):716-25. PubMed ID: 6061386
    [No Abstract]   [Full Text] [Related]  

  • 18. Exercise-induced increase in the capacity of skeletal muscle to oxidize palmitate.
    Molé PA; Holloszy JO
    Proc Soc Exp Biol Med; 1970 Jul; 134(3):789-92. PubMed ID: 5431369
    [No Abstract]   [Full Text] [Related]  

  • 19. [In vitro oxidation of [U-14C] palmitate, [1-14C] and [6-14C] glucose in newborn and adult rats and pigs].
    Snitinskiĭ VV; Ianovich VG; Vovk SI
    Zh Evol Biokhim Fiziol; 1985; 21(1):86-8. PubMed ID: 3920843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between palmitate and ketone bodies as fuels for the heart: study with positron emission tomography.
    Vanoverschelde JL; Wijns W; Kolanowski J; Bol A; Decoster PM; Michel C; Cogneau M; Heyndrickx GR; Essamri B; Melin JA
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H701-7. PubMed ID: 8456973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.