These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 6034211)
1. ATP, activation, and the heat of shortening of muscle. Davies RE; Kushmerick MJ; Larson RE Nature; 1967 Apr; 214(5084):148-51. PubMed ID: 6034211 [No Abstract] [Full Text] [Related]
2. The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxation processes. Kushmerick MJ; Larson RE; Davies RE Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):293-313. PubMed ID: 4391322 [No Abstract] [Full Text] [Related]
3. Phosphorylcreatine and ATP changes during shortening and lengthening of stimulated muscle. Maréchal G Arch Int Physiol Biochim; 1964 Mar; 72(2):306-9. PubMed ID: 4157951 [No Abstract] [Full Text] [Related]
4. The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. Mommaerts WF; Wallner A J Physiol; 1967 Nov; 193(2):343-57. PubMed ID: 6065882 [TBL] [Abstract][Full Text] [Related]
6. [ATP accumulation in skeletal muscle during tetanus as an instance of a summation process]. Kirzon MV; Manovtseva MA Fiziol Zh SSSR Im I M Sechenova; 1972 Sep; 58(9):1403-9. PubMed ID: 4538960 [No Abstract] [Full Text] [Related]
7. [Changes in proteins and in characteristics of skeletal muscle injury due to heat]. Stabrovskaia VI; Braun AD Tsitologiia; 1972 Oct; 14(10):1253-9. PubMed ID: 4264257 [No Abstract] [Full Text] [Related]
10. [Effect of heat and ATP on the reaction of dyes with glycerinated frog muscle fibers]. Gamaleĭ IA Tsitologiia; 1970 Oct; 12(10):1266-70. PubMed ID: 5513513 [No Abstract] [Full Text] [Related]
12. The involvement of pH, adenosine triphosphate, calcium, and magnesium in the contraction of the glycerinated stalks of Vorticella. Townes MM; Brown DE J Cell Physiol; 1965 Apr; 65(2):261-9. PubMed ID: 4953636 [No Abstract] [Full Text] [Related]
13. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Appendix. Free energy and enthalpy of atp hydrolysis in the sarcoplasm. Kushmerick MJ; Davies RE Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):315-53. PubMed ID: 4391323 [No Abstract] [Full Text] [Related]
14. Contractile processes in striated muscle. Perry SV J Gen Physiol; 1967 Jul; 50(6):Suppl:63-70. PubMed ID: 6050600 [No Abstract] [Full Text] [Related]
15. Chemical change, production of tension and energy following stretch of active muscle of frog. Curtin NA; Woledge RC J Physiol; 1979 Dec; 297(0):539-50. PubMed ID: 317107 [TBL] [Abstract][Full Text] [Related]
16. The theory of sliding filament models for muscle contraction. I. The two-state model. Smith DA; Sicilia S J Theor Biol; 1987 Jul; 127(1):1-30. PubMed ID: 3669681 [TBL] [Abstract][Full Text] [Related]
17. Possible role in contraction of structurally bound phosphate of muscle. Cheesman DF; Whitehead A Nature; 1969 Feb; 221(5182):736-9. PubMed ID: 5766643 [No Abstract] [Full Text] [Related]
18. Regulation of striated muscle contraction: a discussion. Chalovich JM J Muscle Res Cell Motil; 2002; 23(4):353-61. PubMed ID: 12630710 [No Abstract] [Full Text] [Related]
19. [On the problem of the protein components of the excitable membrane of muscle fibers]. Ushakov VB Biofizika; 1968; 13(1):182-5. PubMed ID: 5660871 [No Abstract] [Full Text] [Related]
20. The relation between maximum shortening velocity and the magnesium adenosine triphosphate concentration in frog skinned muscle fibres [proceedings]. Ferenczi MA; Goldman YE; Simmons RM J Physiol; 1979 Jul; 292():71P-72P. PubMed ID: 490408 [No Abstract] [Full Text] [Related] [Next] [New Search]