These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6034693)

  • 1. On the interaction of trypsin with neutral substrates and inhibitors.
    Sanborn BM; Hein GE
    Biochim Biophys Acta; 1967 Jul; 139(2):524-6. PubMed ID: 6034693
    [No Abstract]   [Full Text] [Related]  

  • 2. The interaction of trypsin with neutral substrates and modifiers.
    Sanborn BM; Hein GE
    Biochemistry; 1968 Oct; 7(10):3616-24. PubMed ID: 5681468
    [No Abstract]   [Full Text] [Related]  

  • 3. Facile fluorescence-based detection of PAD4-mediated citrullination.
    Wildeman E; Pires MM
    Chembiochem; 2013 May; 14(8):963-7. PubMed ID: 23640867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and kinetic characterisation of omega-guanidinocarbonic acid ethyl esters as trypsin substrates.
    Schuster M; Medvedkin VN; Schellenberger V; Mitin YuV ; Jakubke HD
    Biomed Biochim Acta; 1990; 49(6):519-21. PubMed ID: 2275728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of urea. IV. Further studies on condensation in arginine synthesis from citrulline.
    RATNER S; PETRACK B
    J Biol Chem; 1953 Jan; 200(1):161-74. PubMed ID: 13034771
    [No Abstract]   [Full Text] [Related]  

  • 6. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin.
    Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S
    Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A propeptide-independent protease from Tannerella sp.6_1_58FAA_CT1 displays trypsin-like specificity.
    Song Q; Zhang X; Li N; Shen J; Cheng J
    J Basic Microbiol; 2017 Jan; 57(1):50-56. PubMed ID: 27714828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the flux in the arginine pathway of Neurospora crassa. The flux from citrulline to arginine.
    Flint HJ; Porteous DJ; Kacser H
    Biochem J; 1980 Jul; 190(1):1-15. PubMed ID: 6449928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of peanut trypsin-chymotrypsin inhibitor B-III to a chymotrypsin inhibitor by deimination of the P1 arginine residues in two reactive sites.
    Kurokawa T; Hara S; Takahara H; Sugawara K; Ikenaka T
    J Biochem; 1987 Jun; 101(6):1361-7. PubMed ID: 3667552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hydrolysis of the methyl esters of the N-arylsulfonyl derivatives of L-arginine by thrombin and trypsin].
    Serebrianyĭ SB; Kibirev VK; Sereĭskaia AA; Fedoriak DM
    Biokhimiia; 1975; 40(1):103-6. PubMed ID: 166707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Metabolism of ammonium compounds. II. Distribution of ammonium ion (NH4), arginine, citrulline and urea in different test tissues in normal rats poisoned with ammonium ion and protected with arginine].
    Roberge A; Charbonneau R
    Rev Can Biol; 1969 Mar; 28(1):1-8. PubMed ID: 5770978
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)-l-arginine and ArgRc-l-citrulline protein-ligand complexes.
    Asi AM; Rahman NA; Merican AF
    J Mol Graph Model; 2004 Mar; 22(4):249-62. PubMed ID: 15177077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Importance of arginine content and arginase activity in fertility].
    Papp G; Grof J; Molnár J; Jambor E
    Andrologia; 1979 Jan; 11(1):37-41. PubMed ID: 420414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of urea cycle intermediates in chronic renal failure.
    Swendseid ME; Wang M; Schutz I; Kopple JD
    Am J Clin Nutr; 1978 Sep; 31(9):1581-6. PubMed ID: 685873
    [No Abstract]   [Full Text] [Related]  

  • 15. [Synthesis of urea in the cerebral tissue].
    Haţegan D
    Stud Cercet Neurol; 1969; 14(3):153-64. PubMed ID: 4899274
    [No Abstract]   [Full Text] [Related]  

  • 16. Quantitative aspects of interorgan relationships among arginine and citrulline metabolism.
    Yu YM; Burke JF; Tompkins RG; Martin R; Young VR
    Am J Physiol; 1996 Dec; 271(6 Pt 1):E1098-109. PubMed ID: 8997231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of guanidine- or urea-group containing substances on the growth of the LS-1 streptomycin strain of Act. streptomycini].
    Galanina LA; Agatov PA
    Dokl Akad Nauk SSSR; 1965 Dec; 165(6):1413-5. PubMed ID: 5875604
    [No Abstract]   [Full Text] [Related]  

  • 18. [Dependence of thrombin- and trypsin-catalyzed hydrolysis of N-alpha-arylsulfonyl-L-arginine methyl esters on the structure of acylamide part of substrates].
    Fedoriak DM; Kibirev VK; Sereĭskaia AA; Serebrianyĭ SB
    Biokhimiia; 1977 Sep; 42(9):1595-602. PubMed ID: 20997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Kinetics of trypsin-catalyzed hydrolysis of some arginine-containing peptide methyl esters].
    Poiarkova SA; Chetyrkina SN; Kibirev VK
    Ukr Biokhim Zh (1999); 2002; 74(3):113-5. PubMed ID: 12916247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of agarose-bound trypsin.
    Walter B
    Biochim Biophys Acta; 1976 May; 429(3):950-3. PubMed ID: 1268234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.