These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 6034758)

  • 1. Decreased K+ conductance produced by Ba++ in frog sartorius fibers.
    Sperelakis N; Schneider MF; Harris EJ
    J Gen Physiol; 1967 Jul; 50(6):1565-83. PubMed ID: 6034758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ionic requirements for the initiation of action potentials in insect muscle fibers.
    Washio H
    J Gen Physiol; 1972 Feb; 59(2):121-34. PubMed ID: 5058471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase in PNa and PK of cultured heart cells produced by veratridine.
    Sperelakis N; Pappano AJ
    J Gen Physiol; 1969 Jan; 53(1):97-114. PubMed ID: 5761875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ba2+ ions block K+-induced contractures by antagonizing K+-induced membrane depolarization in frog skeletal muscle fibres.
    Frank GB; Rohani F
    Can J Physiol Pharmacol; 1982 Jan; 60(1):47-51. PubMed ID: 6279259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THE INFLUENCE OF SODIUM-FREE SOLUTIONS ON THE MEMBRANE POTENTIAL OF FROG MUSCLE FIBERS.
    MULLINS LJ; NODA K
    J Gen Physiol; 1963 Sep; 47(1):117-32. PubMed ID: 14060441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.
    Standen NB; Stanfield PR
    J Physiol; 1978 Jul; 280():169-91. PubMed ID: 308537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting potential and electrical properties of frog slow muscle fibres. Effect of different external solutions.
    Stefani E; Steinbach AB
    J Physiol; 1969 Aug; 203(2):383-401. PubMed ID: 5796469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of free fatty acids on functional properties of isolated skeletal muscles. Octanoate action on membrane resistance.
    Caffier G; Kössler F; Küchler G
    Pflugers Arch; 1980 Jan; 383(2):87-9. PubMed ID: 6966791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THE CONTROL OF THE MEMBRANE POTENTIAL OF MUSCLE FIBERS BY THE SODIUM PUMP.
    MULLINS LJ; AWAD MZ
    J Gen Physiol; 1965 May; 48(5):761-75. PubMed ID: 14324987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease in K+ conductance and depolarization of frog cardiac muscle produced by Ba++.
    Hermsmeyer K; Sperelakis N
    Am J Physiol; 1970 Oct; 219(4):1108-14. PubMed ID: 5459476
    [No Abstract]   [Full Text] [Related]  

  • 11. Contraction and action potentials of frog heart muscles soaked in sucrose solution.
    VAN DER KLOOT WG; RUBIN NS
    J Gen Physiol; 1962 Sep; 46(1):35-56. PubMed ID: 13924542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockage of resting potassium conductance in frog muscle fibers by a toxin isolated from the sponge Haliclona viridis.
    Sevcik C; Alvarez-Vasquez F; Saavedra JA; Cordovez G
    Toxicon; 1986; 24(8):851-60. PubMed ID: 2430348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of barium and bicarbonate on glial cells of Necturus optic nerve. Studies with microelectrodes and voltage-sensitive dyes.
    Astion ML; Obaid AL; Orkand RK
    J Gen Physiol; 1989 Apr; 93(4):731-44. PubMed ID: 2732681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane.
    NAKAJIMA S; IWASAKI S; OBATA K
    J Gen Physiol; 1962 Sep; 46(1):97-115. PubMed ID: 14478119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium spike and calcium-dependent potassium conductance in mechanosensory neurons of the lamprey.
    Leonard JP; Wickelgren WO
    J Neurophysiol; 1985 Jan; 53(1):171-82. PubMed ID: 2579216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of sodium and potassium ions in the generation of the electro-olfactogram.
    Takagi SF; Wyse GA; Kitamura H; Ito K
    J Gen Physiol; 1968 Apr; 51(4):552-78. PubMed ID: 5651772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition.
    Gordon AM; Godt RE; Donaldson SK; Harris CE
    J Gen Physiol; 1973 Nov; 62(5):550-74. PubMed ID: 4543066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actions of some anions on electrical properties and mechanical threshold of frog twitch muscle.
    Kao CY; Stanfield PR
    J Physiol; 1968 Sep; 198(2):291-309. PubMed ID: 5698275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle.
    Spalding BC; Senyk O; Swift JG; Horowicz P
    Am J Physiol; 1981 Jul; 241(1):C68-75. PubMed ID: 6972703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers.
    Matsumura M; Mashima H
    Jpn J Physiol; 1976; 26(2):145-57. PubMed ID: 966400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.