These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6037315)

  • 1. Plasma volume and tilt table response to water immersion deconditioning experiments using extremity cuffs.
    Vogt FB
    Aerosp Med; 1967 May; 38(5):460-4. PubMed ID: 6037315
    [No Abstract]   [Full Text] [Related]  

  • 2. Tilt table and plasma volume changes with short term deconditioning experiments.
    Vogt FB
    Aerosp Med; 1967 Jun; 38(6):564-8. PubMed ID: 6034926
    [No Abstract]   [Full Text] [Related]  

  • 3. Relative effectiveness of selected space flight deconditioning countermeasures.
    McCally M; Pohl SA; Samson PA
    Aerosp Med; 1968 Jul; 39(7):722-34. PubMed ID: 5705740
    [No Abstract]   [Full Text] [Related]  

  • 4. Blood pressure and heart rate responses to sudden change of posture during 20 days of simulated microgravity (-6 degrees head-down tilt).
    Haruna Y; Suzuki Y
    J Gravit Physiol; 1997 Jul; 4(2):P37-8. PubMed ID: 11540690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of hemodynamic and volume responses to different levels of lower body suction and head-up tilt.
    König EM; Sauseng-Fellegger G; Hinghofer-Szalkay H
    Physiologist; 1993 Feb; 36(1 Suppl):S53-5. PubMed ID: 11538531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular and biochemical response to simulated space flight entry.
    Hordinsky JR; Gebhardt U; Wegmann HM; Schäfer G
    Aviat Space Environ Med; 1981 Jan; 52(1):16-8. PubMed ID: 7213281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tilt table design for rapid and sinusoidal posture change with minimal vestibular stimulation.
    Gisolf J; Akkerman EM; Schreurs AW; Strackee J; Stok WJ; Karemaker JM
    Aviat Space Environ Med; 2004 Dec; 75(12):1086-91. PubMed ID: 15619866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiovascular deconditioning: role of blood volume and sympathetic neurohormones.
    Graveline DE
    Life Sci Space Res; 1964; 2():287-98. PubMed ID: 11881647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of heart rate and arterial pressure spectra during head up tilt and a matched level of LBNP.
    Patwardhan AR; Evans JM; Berk M; Knapp CF
    Aviat Space Environ Med; 1995 Sep; 66(9):865-71. PubMed ID: 7487825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular studies during and following simulation and weightlessness.
    Carlson LD
    Life Sci Space Res; 1967; 5():51-4. PubMed ID: 11973849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular response to functional electrical stimulation and dynamic tilt table therapy to improve orthostatic tolerance.
    Chi L; Masani K; Miyatani M; Adam Thrasher T; Wayne Johnston K; Mardimae A; Kessler C; Fisher JA; Popovic MR
    J Electromyogr Kinesiol; 2008 Dec; 18(6):900-7. PubMed ID: 18835189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-out immersion in the non-human primate: a model of cardiovascular deconditioning during microgravity.
    Cornish KG; Hughes K; Dreessen A; Olguin M
    Aviat Space Environ Med; 1999 Aug; 70(8):773-9. PubMed ID: 10447051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated scoring of tilt table response as a means to evaluate cardiovascular deconditioning due to true or simulated space flight.
    Benjamin FB; Townsend JC; Vinograd SP; Bollerud J
    Aerosp Med; 1968 Feb; 39(2):158-61. PubMed ID: 5645396
    [No Abstract]   [Full Text] [Related]  

  • 14. Gravitational stress and fluid volume regulation: a suggestion for revision of current hypotheses.
    Norsk P
    J Gravit Physiol; 1997 Jul; 4(2):P85-8. PubMed ID: 11540709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of simulated weightlessness upon the cardiovascular system.
    Howard P; Ernsting J; Denison DM; Fryer DI; Glaister DH; Byford GH
    Aerosp Med; 1967 Jun; 38(6):551-63. PubMed ID: 6034925
    [No Abstract]   [Full Text] [Related]  

  • 16. Hormonal responses to head-out water immersion diminish after exposure to head-down tilt.
    Matsui N; Kambe F; Miyamoto N; Murata Y; Seo H; Ohmori S; Sueda K; Tamura Y
    Microgravity Sci Technol; 1993 Dec; 6(4):286-92. PubMed ID: 11541851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of human deconditioning during prolonged immersion in water.
    Shulzhenko EB; Vil-Vilyams IF; Grigoryev AI; Gogolev KI; Khudyakova MA
    Life Sci Space Res; 1977; 15():219-24. PubMed ID: 11962494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Correlation between empirical and statistical indices of cardiovascular deconditioning in response to orthostatic exposures].
    Voskresenskiĭ AD; Mikhaĭlov VM; Pometov IuD
    Aviakosm Ekolog Med; 2002; 36(5):48-51. PubMed ID: 12572125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular deconditioning through head-down tilt bed rest increases blood pressure variability and plasma renin activity.
    Schmedtje JF; Liu WL; Taylor AA
    Aviat Space Environ Med; 1996 Jun; 67(6):539-46. PubMed ID: 8827135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of short-term bed rest and water immersion on plasma volume and catecholamine response to tilting.
    Torphy DE
    Aerosp Med; 1966 Apr; 37(4):383-7. PubMed ID: 5954445
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.