These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES. TEDESCHI H; JAMES JM; ANTHONY W J Cell Biol; 1963 Sep; 18(3):503-13. PubMed ID: 14064105 [TBL] [Abstract][Full Text] [Related]
5. Osmotic properties of mitochondria. Bentzel CJ; Solomon AK J Gen Physiol; 1967 Jul; 50(6):1547-63. PubMed ID: 6034757 [TBL] [Abstract][Full Text] [Related]
6. The osmotic nature of the ion-induced swelling of rat-liver mitochondria. Rottenberg H; Solomon AK Biochim Biophys Acta; 1969 Oct; 193(1):48-57. PubMed ID: 5349619 [No Abstract] [Full Text] [Related]
7. Water extrusion in isolated subcellular fractions. IV. Simplified system to study the adenosine triphosphate-dependent reaction. Rendi R Biochim Biophys Acta; 1965 May; 102(1):306-8. PubMed ID: 4220732 [No Abstract] [Full Text] [Related]
9. The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. Massari S; Azzone GF Biochim Biophys Acta; 1972; 283(1):23-9. PubMed ID: 4643353 [No Abstract] [Full Text] [Related]
10. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. Harris EJ; van Dam K Biochem J; 1968 Feb; 106(3):759-66. PubMed ID: 5639931 [TBL] [Abstract][Full Text] [Related]
11. COUPLED TRANSPORT OF SOLUTE AND WATER ACROSS RABBIT GALLBLADDER EPITHELIUM. WHITLOCK RT; WHEELER HO J Clin Invest; 1964 Dec; 43(12):2249-65. PubMed ID: 14234821 [No Abstract] [Full Text] [Related]
12. WATER EXTRUSION IN ISOLATED SUBCELLULAR FRACTIONS. 3. THE IMPORTANCE OF PHOSPHOLIPIDS IN THE ME2+-EDTA DEPENDENT REACTION. RENDI R Biochim Biophys Acta; 1964 Dec; 84():694-706. PubMed ID: 14266252 [No Abstract] [Full Text] [Related]
13. Thermodynamic and kinetic aspects of the interconversion of chemical and osmotic energies in mitochondria. Azzone GF; Massari S Eur J Biochem; 1971 Mar; 19(1):97-107. PubMed ID: 5551630 [No Abstract] [Full Text] [Related]
14. Osmotic sensitivity of bacterial protoplasts and the response of their limiting membrane to stretching. Marquis RE Arch Biochem Biophys; 1967 Feb; 118(2):323-31. PubMed ID: 4962159 [No Abstract] [Full Text] [Related]
15. Hydration and steric pressures between phospholipid bilayers. McIntosh TJ; Simon SA Annu Rev Biophys Biomol Struct; 1994; 23():27-51. PubMed ID: 7919783 [No Abstract] [Full Text] [Related]
16. The normal and pathological movement of water in tissues and its relation to the colligative properties of solutions and to inflammation. Opie EL Proc Natl Acad Sci U S A; 1966 Aug; 56(2):426-39. PubMed ID: 5229966 [No Abstract] [Full Text] [Related]
17. OSMOTIC AND METABOLIC ALTERATIONS OF MITOCHONDRIAL SIZE. LYNN WS; FORTNEY S; BROWN RH J Cell Biol; 1964 Oct; 23(1):1-8. PubMed ID: 14228514 [TBL] [Abstract][Full Text] [Related]
18. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. Andreoli TE; Dennis VW; Weigl AM J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743 [TBL] [Abstract][Full Text] [Related]
19. [Coparative photometric and electron microscopic studies on isolated rat brain mitochondria and microsomes in vitro under conditions of osmotic swelling and ATP-induced contraction]. Voth D; Schäfer A Brain Res; 1968 Sep; 10(3):322-41. PubMed ID: 5693844 [No Abstract] [Full Text] [Related]
20. An osmotic system within the cytoplasm of cells. OPIE EL J Exp Med; 1948 May; 87(5):425-44. PubMed ID: 18912893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]