These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6037526)

  • 1. Impairment of one-trial passive avoidance learning in mice by scopolamine, scopolamine methylbromide, and physostigmine.
    Bohdanecký Z; Jarvik ME
    Int J Neuropharmacol; 1967 May; 6(3):217-22. PubMed ID: 6037526
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactions of scopolamine and physostigmine with ECS and one trial learning.
    Davis JW; Thomas RK; Adams HE
    Physiol Behav; 1971 Mar; 6(3):219-22. PubMed ID: 5125477
    [No Abstract]   [Full Text] [Related]  

  • 3. The cholinergic system, amnesia and memory.
    Lewis DJ; Bregman NJ
    Physiol Behav; 1972 Mar; 8(3):511-4. PubMed ID: 5064483
    [No Abstract]   [Full Text] [Related]  

  • 4. Amnesic effects of scopolamine.
    Glick SD; Zimmerberg B
    Behav Biol; 1972 Apr; 7(2):245-54. PubMed ID: 5064951
    [No Abstract]   [Full Text] [Related]  

  • 5. ECS dissociation of learning and one-way cross-dissociation with physostigmine and scopolamine.
    Gardner EL; Glick SD; Jarvik ME
    Physiol Behav; 1972 Jan; 8(1):11-5. PubMed ID: 4677196
    [No Abstract]   [Full Text] [Related]  

  • 6. Electroconvulsive shock induced impairment and enhancement of a learned escape response.
    Wiener NI
    Physiol Behav; 1970 Sep; 5(9):971-4. PubMed ID: 5522524
    [No Abstract]   [Full Text] [Related]  

  • 7. Berry CA: Effect of cholinergic drugs on passive avoidance in the mouse.
    Dilts SL
    J Pharmacol Exp Ther; 1967 Nov; 158(2):279-85. PubMed ID: 6065151
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of physostigmine, atropine and scopolamine on behavior maintained by a multiple schedule of food presentation in the mouse.
    Wenger GR
    J Pharmacol Exp Ther; 1979 Apr; 209(1):137-43. PubMed ID: 430373
    [No Abstract]   [Full Text] [Related]  

  • 9. Relearning at different times after training as affected by centrally and peripherally acting cholinergic drugs in the mouse.
    Squire LR; Glick SD; Goldfarb J
    J Comp Physiol Psychol; 1971 Jan; 74(1):41-5. PubMed ID: 5163699
    [No Abstract]   [Full Text] [Related]  

  • 10. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish.
    Kim YH; Lee Y; Kim D; Jung MW; Lee CJ
    Neurosci Res; 2010 Jun; 67(2):156-61. PubMed ID: 20298728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term memory: facilitation and disruption with cholinergic agents.
    Alpern HP; Marriott JG
    Physiol Behav; 1973 Oct; 11(4):571-5. PubMed ID: 4743228
    [No Abstract]   [Full Text] [Related]  

  • 12. Cholinergic mechanisms and alterations in behavioral suppression as factors producing time-dependent changes in avoidance performance.
    Anisman H
    J Comp Physiol Psychol; 1973 Jun; 83(3):465-77. PubMed ID: 4715307
    [No Abstract]   [Full Text] [Related]  

  • 13. Active avoidance behavior in guinea pigs: effects of physostigmine and scopolamine.
    Philippens IH; Melchers BP; Wolthuis OL
    Pharmacol Biochem Behav; 1992 Jun; 42(2):285-9. PubMed ID: 1631181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The behavioral effects of heptyl physostigmine, a new cholinesterase inhibitor, in tests of long-term and working memory in rodents.
    Dawson GR; Bentley G; Draper F; Rycroft W; Iversen SD; Pagella PG
    Pharmacol Biochem Behav; 1991 Aug; 39(4):865-71. PubMed ID: 1763105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of physostigmine and neostigmine on acquisition and performance of a conditioned avoidance behavior in the rat.
    Rosecrans JA; Domino EF
    Pharmacol Biochem Behav; 1974; 2(1):67-72. PubMed ID: 4828484
    [No Abstract]   [Full Text] [Related]  

  • 16. The effects of centrally and peripherally acting cholinergic drugs on the short-term performance gradient following passive-avoidance training.
    Schneider AM; Kapp BS; Sherman WM
    Psychopharmacologia; 1970 Aug; 18(1):77-81. PubMed ID: 5523377
    [No Abstract]   [Full Text] [Related]  

  • 17. A pharmacological analysis of processes underlying differential responding: a review and further experiments with scopolamine, amphetamine, lysergic acid diethylamide (LSD-25), chlordiazepoxide, physostigmine, and chlorpromazine.
    Frontali M; Amorico L; De Acetis L; Bignami G
    Behav Biol; 1976 Sep; 18(1):1-74. PubMed ID: 791242
    [No Abstract]   [Full Text] [Related]  

  • 18. Systemic injection of pirenzepine induces a deficit in passive avoidance learning in rats.
    Worms P; Gueudet C; Pério A; Soubrié P
    Psychopharmacology (Berl); 1989; 98(2):286-8. PubMed ID: 2502800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG patterns during the behavioural desensitization to scopolamine in rats.
    Florio V; Bignami G; Longo VG
    Int J Neuropharmacol; 1969 Sep; 8(5):405-11. PubMed ID: 5344486
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenserine: a physostigmine derivative that is a long-acting inhibitor of cholinesterase and demonstrates a wide dose range for attenuating a scopolamine-induced learning impairment of rats in a 14-unit T-maze.
    Iijima S; Greig NH; Garofalo P; Spangler EL; Heller B; Brossi A; Ingram DK
    Psychopharmacology (Berl); 1993; 112(4):415-20. PubMed ID: 7871051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.