These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6038027)

  • 21. The components of the sodium efflux in frog muscle.
    Keynes RD; Steinhardt RA
    J Physiol; 1968 Oct; 198(3):581-99. PubMed ID: 5685289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of exercise and obesity on skeletal muscle amino acid uptake.
    Friedman JE; Lemon PW; Finkelstein JA
    J Appl Physiol (1985); 1990 Oct; 69(4):1347-52. PubMed ID: 2262452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homogeneity of [3H]ouabain-binding sites in rat soleus muscle.
    Kjeldsen K
    Biochem J; 1988 Jan; 249(2):481-5. PubMed ID: 3342027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Choline permeability in cardiac muscle cells of the cat.
    Bosteels S; Vleugels A; Carmeliet E
    J Gen Physiol; 1970 May; 55(5):602-19. PubMed ID: 5443466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distribution of sodium, potassium and chloride in the smooth muscle of the rat portal vein.
    Haljamäe H; Johansson B; Jonsson O; Röckert H
    Acta Physiol Scand; 1970 Feb; 78(2):255-68. PubMed ID: 5456889
    [No Abstract]   [Full Text] [Related]  

  • 26. Distribution of inulin-carboxyl-C14 in heart and skeletal muscle with respect to in vivo and in vitro extracellular space determinations.
    Lossnitzer K; Kelley TF
    Experientia; 1968 Feb; 24(2):126-7. PubMed ID: 5643795
    [No Abstract]   [Full Text] [Related]  

  • 27. Distribution of inulin, sucrose and mannitol in rat brain cortex slices following in vivo or in vitro equilibration.
    Amtorp O
    J Physiol; 1979 Sep; 294():81-90. PubMed ID: 512964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strophanthidin-sensitive components of potassium and sodium movements in skeletal muscle as influenced by the internal sodium concentration.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1968 Sep; 52(3):389-407. PubMed ID: 5673300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of lanthanum to estimate the numbers of extracellular cation-exchanging sites in the guinea-pig's taenia coli, and its effects on transmembrane monovalent ion movements.
    Brading AF; Widdicombe JH
    J Physiol; 1977 Apr; 266(2):255-73. PubMed ID: 857002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of volume changes in the T-tubes of frog skeletal muscle exposed to sucrose.
    Birks RI; Davey DF
    J Physiol; 1972 Apr; 222(1):95-111. PubMed ID: 4556582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation by insulin of accumulation and incorporation into protein of L-[3H]proline in the intact levator ani muscle from the rat.
    Adolfsson S; Arvill A; Ahrén K
    Biochim Biophys Acta; 1967 Feb; 135(1):176-8. PubMed ID: 6031504
    [No Abstract]   [Full Text] [Related]  

  • 32. Intracellular ion content of skeletal muscle measured by instrumental neutron activation analysis.
    Lindinger MI; Heigenhauser GJ
    J Appl Physiol (1985); 1987 Jul; 63(1):426-33. PubMed ID: 3624145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The levator ani muscle of the rat as an intact preparation suitable for in vitro invetigations.
    Arvill A; Ahrén K
    Acta Endocrinol (Copenh); 1966 Jun; 52(2):325-36. PubMed ID: 5952709
    [No Abstract]   [Full Text] [Related]  

  • 34. [3H]Sucrose compartments in frog skeletal muscle relative to sarcoplasmic reticulum.
    Sperelakis N; Shigenobu K; Rubio R
    Am J Physiol; 1978 May; 234(5):C181-90. PubMed ID: 306200
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of insulin upon the sodium pump in frog skeletal muscle.
    Moore RD
    J Physiol; 1973 Jul; 232(1):23-45. PubMed ID: 4542575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of pH on the 36-Cl efflux from frog skeletal muscle.
    Hutter OF; Warner AE
    J Physiol; 1967 Apr; 189(3):427-43. PubMed ID: 6040155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volume adjustment by renal medullary cells in hypo- and hyperosmolal solutions containing permeant and impermeant solutes.
    Law RO
    J Physiol; 1975 May; 247(1):55-70. PubMed ID: 1138076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dimensions of the extracellular space in sartorius muscle.
    TASKER P; SIMON SE; JOHNSTONE BM; SHANKLY KH; SHAW FH
    J Gen Physiol; 1959 Sep; 43(1):39-53. PubMed ID: 13837007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat.
    Chinet A; Clausen T; Girardier L
    J Physiol; 1977 Feb; 265(1):43-61. PubMed ID: 850182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular space of frog skeletal muscle in vivo and in vitro: relation to proton magnetic resonance relaxation times.
    Neville MC; White S
    J Physiol; 1979 Mar; 288():71-83. PubMed ID: 313983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.