These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 603818)
21. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis. Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314 [TBL] [Abstract][Full Text] [Related]
22. Modified adaptive resonance theory based control strategy for EMG operated prosthesis for below-elbow amputee. Arora AS J Med Eng Technol; 2007; 31(3):191-201. PubMed ID: 17454408 [TBL] [Abstract][Full Text] [Related]
23. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. Chu JU; Moon I; Mun MS IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328 [TBL] [Abstract][Full Text] [Related]
24. Automatic tuning of myoelectric prostheses. Bonivento C; Davalli A; Fantuzzi C; Sacchetti R; Terenzi S J Rehabil Res Dev; 1998 Jul; 35(3):294-304. PubMed ID: 9704313 [TBL] [Abstract][Full Text] [Related]
25. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332 [TBL] [Abstract][Full Text] [Related]
26. The experimental demonstration of a multichannel time-series myoprocessor: system testing and evaluation. Triolo RJ; Moskowitz GD IEEE Trans Biomed Eng; 1989 Oct; 36(10):1018-27. PubMed ID: 2793195 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
28. Selective classification for improved robustness of myoelectric control under nonideal conditions. Scheme EJ; Englehart KB; Hudgins BS IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073 [TBL] [Abstract][Full Text] [Related]
29. Standardising surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle. Farina D; Madeleine P; Graven-Nielsen T; Merletti R; Arendt-Nielsen L Eur J Appl Physiol; 2002 Apr; 86(6):469-78. PubMed ID: 11944093 [TBL] [Abstract][Full Text] [Related]
30. [Multifunctional hand prosthesis control methods using EMG signals (author's transl)]. Yamada M; Niwa N; Uchiyama A Iyodenshi To Seitai Kogaku; 1980 Apr; 18(2):133-8. PubMed ID: 7218561 [No Abstract] [Full Text] [Related]
31. Comparison of an EMG-controlled prosthesis and the normal human biceps brachii muscle. Aaron SL; Stein RB Am J Phys Med; 1976 Feb; 55(1):1-14. PubMed ID: 1247104 [TBL] [Abstract][Full Text] [Related]
32. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses. Kanitz G; Cipriani C; Edin BB IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331 [TBL] [Abstract][Full Text] [Related]
33. EMG pattern recognition control of multifunctional prostheses by transradial amputees. Li G; Kuiken TA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455 [TBL] [Abstract][Full Text] [Related]
34. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses. Huang S; Huang H IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394 [TBL] [Abstract][Full Text] [Related]
35. Upper extremity myoelectric prosthetics. Uellendahl JE Phys Med Rehabil Clin N Am; 2000 Aug; 11(3):639-52. PubMed ID: 10989484 [TBL] [Abstract][Full Text] [Related]
36. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures. Lyons KR; Joshi SS; Joshi SS; Lyons KR IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241 [TBL] [Abstract][Full Text] [Related]
37. Design and evaluation of a prosthesis control system based on the concept of extended physiological proprioception. Doubler JA; Childress DS J Rehabil Res Dev; 1984 May; 21(1):19-31. PubMed ID: 6527287 [TBL] [Abstract][Full Text] [Related]
38. Body schema and body awareness of amputees. Mayer A; Kudar K; Bretz K; Tihanyi J Prosthet Orthot Int; 2008 Sep; 32(3):363-82. PubMed ID: 18677671 [TBL] [Abstract][Full Text] [Related]
39. Investigation of optimum electrode locations by using an automatized surface electromyography analysis technique. Nishihara K; Kawai H; Gomi T; Terajima M; Chiba Y IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):636-42. PubMed ID: 18269999 [TBL] [Abstract][Full Text] [Related]
40. Improved comfort and function of arm prosthesis after implantation of a Humerus-T-Prosthesis in trans-humeral amputees. Witsø E; Kristensen T; Benum P; Sivertsen S; Persen L; Funderud A; Magne T; Aursand HP; Aamodt A Prosthet Orthot Int; 2006 Dec; 30(3):270-8. PubMed ID: 17162517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]