These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6039296)

  • 1. The copper-poly-L-histidine complex. I. The environmental effect of the polyelectrolyte on the oxidase activity of copper ions.
    Pecht I; Levitzki A; Anbar M
    J Am Chem Soc; 1967 Mar; 89(7):1587-91. PubMed ID: 6039296
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetics of iron and copper catalysis of ascorbate oxidation.
    Skov KA; Vonderschmitt DJ
    Bioinorg Chem; 1975 Apr; 4(3):199-213. PubMed ID: 236045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency.
    Sedenho GC; Nascimento SQ; Zamani M; Crespilho FN; Furst AL
    Adv Sci (Weinh); 2024 Jul; 11(25):e2402234. PubMed ID: 38629782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of glutathione by Cu-histidine chelates.
    Fels IG
    Exp Eye Res; 1971 Sep; 12(2):227-9. PubMed ID: 5119357
    [No Abstract]   [Full Text] [Related]  

  • 5. One-electron and two-electron transfer mechanisms in enzymic oxidation-reduction reactions.
    Yamazaki I
    Adv Biophys; 1971; 2():33-76. PubMed ID: 4146736
    [No Abstract]   [Full Text] [Related]  

  • 6. Autoxidation of ascorbic acid catalyzed by the copper(II) bound to L-histidine oligopeptides, (His)iGly and acetyl-(His)i Gly (i=9, 19, 29). Relationship between catalytic activity and coordination mode.
    Ueda JI; Hanaki A; Hatano K; Nakajima T
    Chem Pharm Bull (Tokyo); 2000 Jul; 48(7):908-13. PubMed ID: 10923816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial biomimetics. optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy.
    Weng YC; Fan FR; Bard AJ
    J Am Chem Soc; 2005 Dec; 127(50):17576-7. PubMed ID: 16351066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE ROLE OF COPPER IN THE CATALYTIC ACTION OF LACCASE AND CERULOPLASMIN.
    BROMAN L; MALMSTROEM BG; AASA R
    Biochim Biophys Acta; 1963 Nov; 75():365-76. PubMed ID: 14104946
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein.
    Kuzuya M; Yamada K; Hayashi T; Funaki C; Naito M; Asai K; Kuzuya F
    Biochim Biophys Acta; 1992 Feb; 1123(3):334-41. PubMed ID: 1536873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Coupled oxidation of hydroquinone and ascorbic acid by polyphenoloxidase].
    LEGRAND G; NEUMANN J; LEHONGRE G
    C R Hebd Seances Acad Sci; 1961 Mar; 252():2023-5. PubMed ID: 13760417
    [No Abstract]   [Full Text] [Related]  

  • 11. Selective oxidation of imidazole ring in histidine residues by the ascorbic acid-copper ion system.
    Uchida K; Kawakishi S
    Biochem Biophys Res Commun; 1986 Jul; 138(2):659-65. PubMed ID: 3017335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonyl formation on a copper-bound prion protein fragment, PrP23-98, associated with its dopamine oxidase activity.
    Shiraishi N; Nishikimi M
    FEBS Lett; 2002 Jan; 511(1-3):118-22. PubMed ID: 11821060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative substrate specificity studies of ascorbic acid oxidase and copper ion catalysis.
    DODDS ML
    Arch Biochem; 1948 Jul; 18(1):51-8. PubMed ID: 18871214
    [No Abstract]   [Full Text] [Related]  

  • 14. Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid.
    Stepuro II; Piletskaya TP; Stepuro VI; Maskevich SA
    Biochemistry (Mosc); 1997 Dec; 62(12):1409-14. PubMed ID: 9481873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbate is particularly effective against LDL oxidation in the presence of iron(III) and homocysteine/cystine at acidic pH.
    Pfanzagl B
    Biochim Biophys Acta; 2005 Oct; 1736(3):237-43. PubMed ID: 16169276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific oxidation of angiotensin I by copper(II) and L-ascorbate: conversion of histidine residues to 2-imidazolones.
    Uchida K; Kawakishi S
    Arch Biochem Biophys; 1990 Nov; 283(1):20-6. PubMed ID: 2241171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand dependence in the copper-catalyzed oxidation of hydroquinones.
    Mandal S; Kazmi NH; Sayre LM
    Arch Biochem Biophys; 2005 Mar; 435(1):21-31. PubMed ID: 15680903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spectral characteristics of the mechanism of oxidase activity of ceruloplasmin].
    Vasil'ev VB; NeÄ­fakh SA; Rusakov DV; Iakovleva TIu; Kholmogorov VE
    Biokhimiia; 1988 Apr; 53(4):620-5. PubMed ID: 2840128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence.
    Ohta Y; Shiraishi N; Nishikawa T; Nishikimi M
    Biochim Biophys Acta; 2000 May; 1474(3):378-82. PubMed ID: 10779690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal catalysis in the depolymerization of hyaluronic acid by autoxidants.
    Harris MJ; Herp A; Pigman W
    J Am Chem Soc; 1972 Oct; 94(21):7570-2. PubMed ID: 5072871
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.