These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 6040)

  • 1. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles.
    Renthal R; Lanyi JK
    Biochemistry; 1976 May; 15(10):2136-43. PubMed ID: 6040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles.
    Lanyi JK; MacDonald RE
    Biochemistry; 1976 Oct; 15(21):4608-14. PubMed ID: 9978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles.
    Lanyi JK; MacDonald RE
    Fed Proc; 1977 May; 36(6):1824-7. PubMed ID: 15877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system.
    MacDonald RE; Lanyi LK
    Biochemistry; 1975 Jul; 14(13):2882-9. PubMed ID: 50859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. III. Time-resolved increase in the transmembrane electric potential and modeling of the associated ion fluxes.
    Helgerson SL; Mathew MK; Bivin DB; Wolber PK; Heinz E; Stoeckenius W
    Biophys J; 1985 Nov; 48(5):709-19. PubMed ID: 4074833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. I. Kinetics of the light-dependent and the sodium-gradient-dependent uptake.
    Lanyi JK; Yearwood-Drayton V; MacDonald RE
    Biochemistry; 1976 Apr; 15(8):1595-603. PubMed ID: 1268186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthesis in cell envelope vesicles of Halobacterium halobium driven by membrane potential and/or base-acid transition.
    Mukohata Y; Isoyama M; Fuke A
    J Biochem; 1986 Jan; 99(1):1-8. PubMed ID: 3957892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient.
    Lanyi JK; Renthal R; MacDonald RE
    Biochemistry; 1976 Apr; 15(8):1603-10. PubMed ID: 5106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium.
    Bakker EP; Rottenberg H; Caplan SR
    Biochim Biophys Acta; 1976 Sep; 440(3):557-72. PubMed ID: 9137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-driven primary sodium ion transport in Halobacterium halobium membranes.
    Lanyi JK
    J Supramol Struct; 1980; 13(1):83-92. PubMed ID: 7442256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modeling of the M----bR reactions.
    Groma GI; Helgerson SL; Wolber PK; Beece D; Dancsházy Z; Keszthelyi L; Stoeckenius W
    Biophys J; 1984 May; 45(5):985-92. PubMed ID: 6329348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4615-19. PubMed ID: 7426620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial rhodopsins monitored with fluorescent dyes in vesicles and in vivo.
    Ehrlich BE; Schen CR; Spudich JL
    J Membr Biol; 1984; 82(1):89-94. PubMed ID: 6502700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced changes of the pH gradient and the membrane potential in H. halobium.
    Michel H; Oesterhelt D
    FEBS Lett; 1976 Jun; 65(2):175-8. PubMed ID: 6333
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.
    Lozier RH; Niederberger W; Bogomolni RA; Hwang S; Stoeckenius W
    Biochim Biophys Acta; 1976 Sep; 440(3):545-56. PubMed ID: 963044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light energy conservation processes in Halobacterium halobium cells.
    Bogomolni RA
    Fed Proc; 1977 May; 36(6):1833-9. PubMed ID: 15879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent delta pH and membrane potential changes in halobacterial vesicles coupled to sodium transport.
    Kamo N; Racanelli T; Packer L
    Membr Biochem; 1982; 4(3):175-88. PubMed ID: 7078461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells.
    Helgerson SL; Stoeckenius W
    Arch Biochem Biophys; 1985 Sep; 241(2):616-27. PubMed ID: 2994571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-potassium effects on the chloride/proton symporter activity of guinea-pig ileal brush-border membrane vesicles.
    Vasseur M; Caüzac M; Frangne R; Alvarado F
    Biochim Biophys Acta; 1992 Jun; 1107(1):150-8. PubMed ID: 1319740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.