These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6040157)

  • 1. The production of persistent changes in the level of neuronal activity by brief local cooling of the cerebral cortex of the rat.
    Gartside IB; Lippold OC
    J Physiol; 1967 Apr; 189(3):475-87. PubMed ID: 6040157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance?
    Gartside IB
    Nature; 1968 Oct; 220(5165):382-3. PubMed ID: 5684882
    [No Abstract]   [Full Text] [Related]  

  • 3. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of synaptic noise and conductance state on spontaneous cortical firing.
    Ozer M; Graham LJ; Erkaymaz O; Uzuntarla M
    Neuroreport; 2007 Aug; 18(13):1371-4. PubMed ID: 17762715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of local superficial cooling of the rat cerebral cortex on unit activity of neurons--hypothetical sources of corticofugal signals].
    Golubev AV; Tolkunov BF
    Neirofiziologiia; 1991; 23(2):181-9. PubMed ID: 1876211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades.
    Chafee MV; Goldman-Rakic PS
    J Neurophysiol; 2000 Mar; 83(3):1550-66. PubMed ID: 10712479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent development of spontaneous bioelectric activity in organotypic cultures of rat occipital cortex.
    Echevarría D; Albus K
    Brain Res Dev Brain Res; 2000 Oct; 123(2):151-64. PubMed ID: 11042344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local cooling of pre-frontal cortex induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo.
    Svensson TH; Tung CS
    Acta Physiol Scand; 1989 May; 136(1):135-6. PubMed ID: 2773655
    [No Abstract]   [Full Text] [Related]  

  • 9. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex.
    Cowan RL; Wilson CJ
    J Neurophysiol; 1994 Jan; 71(1):17-32. PubMed ID: 8158226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons.
    Mackenzie PJ; Murphy TH
    J Neurophysiol; 1998 Oct; 80(4):2089-101. PubMed ID: 9772263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian and other rhythmic activity of neurones in the ventromedial nuclei and lateral hypothalamic area.
    Koizumi K; Nishino H
    J Physiol; 1976 Dec; 263(3):331-56. PubMed ID: 1018272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular analysis of inherent and synaptic activity in hypothalamic thermosensitive neurones in the rat.
    Curras MC; Kelso SR; Boulant JA
    J Physiol; 1991; 440():257-71. PubMed ID: 1804963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons.
    Robinson HP; Kawahara M; Jimbo Y; Torimitsu K; Kuroda Y; Kawana A
    J Neurophysiol; 1993 Oct; 70(4):1606-16. PubMed ID: 8283217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling in cat visual cortex: stability of orientation selectivity despite changes in responsiveness and spike width.
    Girardin CC; Martin KA
    Neuroscience; 2009 Dec; 164(2):777-87. PubMed ID: 19660532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones.
    McCormick DA; Prince DA
    J Physiol; 1987 Dec; 393():743-62. PubMed ID: 2895811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity-related coupling in cortical arterioles: involvement of astrocyte-derived factors.
    Lovick TA; Brown LA; Key BJ
    Exp Physiol; 2005 Jan; 90(1):131-40. PubMed ID: 15466455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in hypothalamic temperature modulate the neuronal response of the ventral thalamus to skin warming in rats.
    Morimoto A; Murakami N; Sakata Y
    J Physiol; 1988 Apr; 398():97-108. PubMed ID: 3392685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous neuronal discharge patterns in developing organotypic mega-co-cultures of neonatal rat cerebral cortex.
    Baker RE; Corner MA; van Pelt J
    Brain Res; 2006 Jul; 1101(1):29-35. PubMed ID: 16784729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cooling on supraoptic neurohypophysial neuronal activity and on urine flow in the rat.
    Ferguson AV; Pittman QJ; Riphagen CL
    J Physiol; 1984 Jul; 352():103-12. PubMed ID: 6747884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.