These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 604122)
1. Antibody formation in laboratory animals after parenteral application of A/swine influenza virus. Dolezalová B; Závadová H; Stárek M; Vonka V Dev Biol Stand; 1977 Jun 1-3; 39():405-8. PubMed ID: 604122 [TBL] [Abstract][Full Text] [Related]
2. Antibody response in humans after administration of whole-virion and split vaccine prepared from two different influenza A/swine viruses. Závadová H; Vonka V; Domorázková E; Syrůcek L; Stárek M; Hrusková J; Plesník V; Janout V; Uvízl M Dev Biol Stand; 1977 Jun 1-3; 39():231-4. PubMed ID: 604101 [TBL] [Abstract][Full Text] [Related]
3. Neuraminidase antibodies in serum and nasal washings after immunization by means of live and killed whole virion, split virion and subunit (HA and N) influenza vaccines. Kuwert EK; Höher PG; Werner J; Scheiermann N; Thraenhart O; Müller B; Kleber G Dev Biol Stand; 1977 Jun 1-3; 39():77-83. PubMed ID: 604137 [TBL] [Abstract][Full Text] [Related]
4. Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. Kilbourne ED; Cerini CP; Khan MW; Mitchell JW; Ogra PL J Immunol; 1987 May; 138(9):3010-3. PubMed ID: 3571981 [TBL] [Abstract][Full Text] [Related]
5. Immunization against influenza A virus: comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in a murine model system. Brett IC; Johansson BE Virology; 2005 Sep; 339(2):273-80. PubMed ID: 15996702 [TBL] [Abstract][Full Text] [Related]
6. Potentiation of the immune response to influenza virus subunit vaccines. Webster RG; Glezen WP; Kasel JA; Laver WG Dev Biol Stand; 1977 Jun 1-3; 39():243-8. PubMed ID: 604104 [TBL] [Abstract][Full Text] [Related]
7. Generation and evaluation of the trivalent inactivated reassortant vaccine using human, avian, and swine influenza A viruses. Du N; Li W; Li Y; Liu S; Sui Y; Qu Z; Wang Y; Du Y; Xu B Vaccine; 2008 Jun; 26(23):2912-8. PubMed ID: 18448208 [TBL] [Abstract][Full Text] [Related]
8. Serological responses to whole and split A/New Jersey vaccines in humans and mice following priming infection with influenza A viruses. Ennis FA; Wise TG; McLaren C; Verbonitz MW Dev Biol Stand; 1977 Jun 1-3; 39():261-6. PubMed ID: 604108 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Tamura S; Tanimoto T; Kurata T Jpn J Infect Dis; 2005 Aug; 58(4):195-207. PubMed ID: 16116250 [TBL] [Abstract][Full Text] [Related]
10. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus. Wesley RD; Lager KM Vet Microbiol; 2006 Nov; 118(1-2):67-75. PubMed ID: 16939702 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous application of influenza chemovaccine and "Vaxigrip" preparations with BCG. Zykov MP; Subbotina TI; Rudenko LG; Kaplin NN Acta Virol; 1983 Mar; 27(2):160-7. PubMed ID: 6135335 [TBL] [Abstract][Full Text] [Related]
12. Characteristic of humoral response of elderly to inactivated influenza vaccine. Siennicka J Arch Immunol Ther Exp (Warsz); 1996; 44(5-6):389-94. PubMed ID: 9017157 [TBL] [Abstract][Full Text] [Related]
13. Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. Li S; Liu C; Klimov A; Subbarao K; Perdue ML; Mo D; Ji Y; Woods L; Hietala S; Bryant M J Infect Dis; 1999 May; 179(5):1132-8. PubMed ID: 10191214 [TBL] [Abstract][Full Text] [Related]
14. Comparative efficacy of North American and antigenically matched reverse genetics derived H5N9 DIVA marker vaccines against highly pathogenic Asian H5N1 avian influenza viruses in chickens. Jadhao SJ; Lee CW; Sylte M; Suarez DL Vaccine; 2009 Oct; 27(44):6247-60. PubMed ID: 19686695 [TBL] [Abstract][Full Text] [Related]
15. Influenza vaccine response following its simultaneous application with BCG 1st report. Zykov MP; Raphaelskaya TI Z Erkr Atmungsorgane; 1981; 156(3):203-11. PubMed ID: 7293275 [TBL] [Abstract][Full Text] [Related]
16. Immunization with dissociated neuraminidase, matrix, and nucleoproteins from influenza A virus eliminates cognate help and antigenic competition. Johansson BE; Kilbourne ED Virology; 1996 Nov; 225(1):136-44. PubMed ID: 8918540 [TBL] [Abstract][Full Text] [Related]
17. The antibody responses to swine influenza virus (SIV) recombinant matrix 1 (rM1), matrix 2 (M2), and hemagglutinin (HA) proteins in pigs with different SIV exposure. Kitikoon P; Strait EL; Thacker EL Vet Microbiol; 2008 Jan; 126(1-3):51-62. PubMed ID: 17719187 [TBL] [Abstract][Full Text] [Related]
18. The antibody response and immunity to challenge infection induced by whole, inactivated and tween-ether split influenza vaccines. Potter CW; Jennings R; Clark A Dev Biol Stand; 1977 Jun 1-3; 39():323-8. PubMed ID: 604115 [No Abstract] [Full Text] [Related]
19. Evaluation of immune responses to inactivated influenza vaccines prepared in embryonated chicken eggs and MDCK cells in a mouse model. Nerome K; Kumihashi H; Nerome R; Hiromoto Y; Yokota Y; Ueda R; Omoe K; Chiba M Dev Biol Stand; 1999; 98():53-63; discussion 73-4. PubMed ID: 10494959 [TBL] [Abstract][Full Text] [Related]
20. Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza. Wu R; Chen Q; Zheng L; Chen J; Sui Z; Guan Y; Chen Z Arch Virol; 2009; 154(8):1203-10. PubMed ID: 19543688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]