These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6043)

  • 41. Erythrina caffra trypsin inhibitor retains its native structure and function after reducing its disulfide bonds.
    Lehle K; Wrba A; Jaenicke R
    J Mol Biol; 1994 Jun; 239(2):276-84. PubMed ID: 8196058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The disulfide bridges of the trypsin-kallikrein inhibitor K from snails (Helix pomatia). Thermal inactivation and proteolysis by thermolysin (author's transl)].
    Dietl T; Tschesche H
    Hoppe Seylers Z Physiol Chem; 1976 Feb; 357(2):139-45. PubMed ID: 3462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 1H nuclear magnetic resonance studies on the structure and mechanism of the HPr protein of Staphylococcus aureus.
    Rösch P; Kalbitzer HR; Schmidt-Aderjan U; Hengstenberg W
    Biochemistry; 1981 Mar; 20(6):1599-605. PubMed ID: 7225348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assignment of the aromatic 1H-NMR resonances of myotoxin a isolated from the venom of Crotalus viridis viridis.
    Henderson JT; Nieman RA; Bieber AL
    Biochim Biophys Acta; 1987 Aug; 914(2):152-61. PubMed ID: 3607069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton nuclear magnetic resonance studies of intact native bovine parathyroid hormone.
    Coddington JM; Barling PM
    Mol Endocrinol; 1989 Apr; 3(4):749-53. PubMed ID: 2542781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMR studies of myelin basic protein. IX. Complete assignments of the tyrosine residues by proton NMR of proteins from six species.
    Mendz GL; Moore WJ; Martenson RE
    Biochim Biophys Acta; 1983 Oct; 748(2):168-75. PubMed ID: 6194821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 1H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor.
    De Marco A; Menegatti E; Guarneri M
    J Biol Chem; 1982 Jul; 257(14):8337-42. PubMed ID: 7085670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionization of tyrosine residues in horse-heart ferricytochrome c and its guanidinated and acetylated-guanidinated derivatives.
    Cronin JR; Farringer BA; Nieman RA; Gust D
    Biochim Biophys Acta; 1985 Apr; 828(3):325-35. PubMed ID: 2985119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy.
    Ugurbil K; Norton RS; Allerhand A; Bersohn R
    Biochemistry; 1977 Mar; 16(5):886-94. PubMed ID: 14666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proton magnetic resonance spectra of adrenodoxin: features of the aromatic region.
    Greenfield NJ; Wu XH; Jordan F
    Biochim Biophys Acta; 1989 May; 995(3):246-54. PubMed ID: 2706273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin.
    Krokoszynska I; Dadlez M; Otlewski J
    J Mol Biol; 1998 Jan; 275(3):503-13. PubMed ID: 9466927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Histidyl and tyrosyl residue ionization studies of subtilisin Novo.
    Omar S; Brown MF; Silver P; Schleich T
    Biochim Biophys Acta; 1979 Jun; 578(2):261-8. PubMed ID: 39621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor.
    Wagner G; Wüthrich K
    J Mol Biol; 1982 Mar; 155(3):347-66. PubMed ID: 6176717
    [No Abstract]   [Full Text] [Related]  

  • 55. High-field 13C nuclear magnetic resonance studies at 90.5 MHz of the basic pancreatic trypsin inhibitor.
    Richarz R; Wüthrich K
    Biochemistry; 1978 Jun; 17(12):2263-9. PubMed ID: 307962
    [No Abstract]   [Full Text] [Related]  

  • 56. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of native and [homoserine lactone-52]-52,53-seco-bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor) to porcine pancreatic beta-kallikrein-B and bovine alpha-chymotrypsin: thermodynamic study.
    Oddone R; Barra D; Amiconi G; Ascenzi P; Tarricone C; Bolognesi M; Bortolotti F; Menegatti E
    J Mol Recognit; 1994 Mar; 7(1):39-46. PubMed ID: 7527234
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Woodward CK; Hilton BD
    Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):3546-54. PubMed ID: 240382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1H n.m.r. studies of insulin. Assignment of resonances and properties of tyrosine residues.
    Bradbury JH; Ramesh V
    Biochem J; 1985 Aug; 229(3):731-7. PubMed ID: 3902004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.