BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 6044620)

  • 1. Comparison of techniques for detection of Pseudomonas solanacearum in artificially infested soils.
    Jenkins SF; Morton DJ; Dukes PD
    Phytopathology; 1967 Jan; 57(1):25-7. PubMed ID: 6044620
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantification of the Pseudomonas population in New Zealand soils by fluorogenic PCR assay and culturing techniques.
    Lloyd-Jones G; Laurie AD; Tizzard AC
    J Microbiol Methods; 2005 Feb; 60(2):217-24. PubMed ID: 15590096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills.
    Mittal A; Singh P
    Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere.
    Brandt KK; Petersen A; Holm PE; Nybroe O
    FEMS Microbiol Ecol; 2006 May; 56(2):281-91. PubMed ID: 16629757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification of the key genes of naphthalene catabolism in soil DNA].
    Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants.
    Costa R; Salles JF; Berg G; Smalla K
    Environ Microbiol; 2006 Dec; 8(12):2136-49. PubMed ID: 17107555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on the degradation of atrazine and metolachlor in soil.
    Zhao S; Arthur EL; Coats JR
    J Agric Food Chem; 2003 May; 51(10):3043-8. PubMed ID: 12720389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil.
    Gorissen A; van Overbeek LS; van Elsas JD
    Can J Microbiol; 2004 Aug; 50(8):587-93. PubMed ID: 15467784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas aureofaciens in soil: survival and recovery efficiency.
    Angle JS; Levin MA; Gagliardi JV; McIntosh MS; Glew JG
    Microb Releases; 1994 Jul; 2(4):247-54. PubMed ID: 7921353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tests in vitro and in pots with certain chemicals for inhibition of Pseudomonas solanacearum.
    el-Goorani MA; Abo-el-Dahab MK; Wagih EE
    Zentralbl Bakteriol Naturwiss; 1978; 133(3):235-9. PubMed ID: 696045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Taxonomic identification of Pseudomonas azotogensis].
    Sancho J; Parés-Farrás R
    Microbiol Esp; 1969; 22(2):85-95. PubMed ID: 5386577
    [No Abstract]   [Full Text] [Related]  

  • 12. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B; Pesaro M; Rüdt A; Widmer F
    Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of sodium salicylate on the population dynamics of a rhizospheric strain of Pseudomonas aureofaciens in soil and on wheat roots].
    Mordukhova EA; Kochetkov VV; Lobanova EV; Slepen'kin AV; Boronin AM
    Mikrobiologiia; 2000; 69(6):844-9. PubMed ID: 11195585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran.
    Ahmadzadeh M; Sharifi-Tehrani A
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):943-52. PubMed ID: 17390843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic diversity of fluorescent pseudomonads in agricultural soils from Korea.
    Kwon SW; Kim JS; Crowley DE; Lim CK
    Lett Appl Microbiol; 2005; 41(5):417-23. PubMed ID: 16238645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel.
    Saadoun I
    J Basic Microbiol; 2002; 42(6):420-8. PubMed ID: 12442304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Ralstonia solanacearum in natural substrates using phage amplification integrated with real-time PCR assay.
    Kutin RK; Alvarez A; Jenkins DM
    J Microbiol Methods; 2009 Mar; 76(3):241-6. PubMed ID: 19138710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between soil microbial diversity and bioremediation process at an oil refinery.
    Płaza G; Ulfig K; Brigmon RL
    Acta Microbiol Pol; 2003; 52(2):173-82. PubMed ID: 14594404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.
    Cycoń M; Wójcik M; Piotrowska-Seget Z
    Chemosphere; 2009 Jul; 76(4):494-501. PubMed ID: 19356785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characterization and in situ monitoring of atrazine-transforming bacteria].
    Koneva ND
    Mikrobiologiia; 2004; 73(6):763-7. PubMed ID: 15688935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.