These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 604695)

  • 1. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification.
    Tannenbaum C; Toggenburger G; Kessler M; Rothstein A; Semenza G
    J Supramol Struct; 1977; 6(4):519-33. PubMed ID: 413010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T; Horie T
    Chem Biol Interact; 2005 Aug; 155(3):129-39. PubMed ID: 15996645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Na(+)-dependent D-glucose transport in small intestine of retinyl palmitate treated rats.
    Tomimatsu T; Horie T
    In Vivo; 2001; 15(1):81-6. PubMed ID: 11286135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of Na+-dependent D-glucose transport.
    Hopfer U; Groseclose R
    J Biol Chem; 1980 May; 255(10):4453-62. PubMed ID: 7372586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
    Toggenburger G; Kessler M; Semenza G
    Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles.
    Beck JC; Sacktor B
    J Biol Chem; 1978 Oct; 253(20):7158-62. PubMed ID: 701240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-Glucose-dependent sodium transport in renal brush border membrane vesicles.
    Hilden SA; Sacktor B
    J Biol Chem; 1979 Aug; 254(15):7090-6. PubMed ID: 88448
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetics of D-glucose transport across the intestinal brush-border membrane of the cat.
    Wolffram S; Eggenberger E; Scharrer E
    Comp Biochem Physiol A Comp Physiol; 1989; 94(1):111-5. PubMed ID: 2571446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in the effects of membrane potentials on pantothenate and glucose uptakes by rabbit renal apical membranes.
    Barbarat B; Chambrey R; Podevin RA
    J Physiol; 1991 Nov; 443():79-90. PubMed ID: 1822544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.
    Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C
    J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar uptake into brush border vesicles from dog kidney. II. Kinetics.
    Turner RJ; Silverman M
    Biochim Biophys Acta; 1978 Aug; 511(3):470-86. PubMed ID: 687625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolated membrane vesicles as tools for analysis of epithelial transport.
    Hopfer U
    Am J Physiol; 1977 Dec; 233(6):E445-9. PubMed ID: 596437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.