These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6047645)

  • 21. Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5.
    Salih E; Brocklehurst K
    Biochem J; 1983 Sep; 213(3):713-8. PubMed ID: 6311173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of a change in the rate-determining step in papain- and ficin-catalyzed acyl-transfer reactions.
    Hinkle PM; Kirsch JF
    Biochemistry; 1971 Jul; 10(14):2717-26. PubMed ID: 5558694
    [No Abstract]   [Full Text] [Related]  

  • 23. Acylation of chymotrypsin by active esters of nonspecific substrates. Evidence for a transient acylimidazole intermediate.
    Hubbard CD; Kirsch JF
    Biochemistry; 1972 Jun; 11(13):2483-93. PubMed ID: 5040654
    [No Abstract]   [Full Text] [Related]  

  • 24. Methylation of histidine-57 in alpha-chymotrypsin by methyl p-nitrobenzenesulfonate. A new approach to enzyme modification.
    Nakagawa Y; Bender ML
    Biochemistry; 1970 Jan; 9(2):259-67. PubMed ID: 5460940
    [No Abstract]   [Full Text] [Related]  

  • 25. Ionization behavior of the histidine residue in the catalytic triad of serine proteases. Mechanistic implications.
    Hunkapiller MW; Smallcombe SH; Witaker DR; Richards JH
    J Biol Chem; 1973 Dec; 248(23):8306-8. PubMed ID: 4201783
    [No Abstract]   [Full Text] [Related]  

  • 26. Phosphoramidic acids. A new class of nonspecific substrates for alkaline phosphatase from Escherichia coli.
    Snyder SL; Wilson IB
    Biochemistry; 1972 Apr; 11(9):1616-23. PubMed ID: 4554950
    [No Abstract]   [Full Text] [Related]  

  • 27. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues.
    Degani Y; Patchornik A
    Biochemistry; 1974 Jan; 13(1):1-11. PubMed ID: 4808702
    [No Abstract]   [Full Text] [Related]  

  • 28. Simulated mutation at the active site of biologically active proteins.
    Polgár L; Bender ML
    Adv Enzymol Relat Areas Mol Biol; 1970; 33():381-400. PubMed ID: 4916857
    [No Abstract]   [Full Text] [Related]  

  • 29. Affinity labeling of bovine carboxypeptidase A Leu by N-bromoacetyl-N-methyl-L-phenylalanine. I. Kinetics of inactivation.
    Hass GM; Neurath H
    Biochemistry; 1971 Sep; 10(19):3535-40. PubMed ID: 5169539
    [No Abstract]   [Full Text] [Related]  

  • 30. PROPERTIES OF A BLOCKED TETRAPEPTIDE ANALOGUE OF THE ACTIVE SITE OF SUBTILISIN.
    BERNHARD S; GRDINIC Z; NOLLER H; SHALTIEL N
    Proc Natl Acad Sci U S A; 1964 Dec; 52(6):1489-94. PubMed ID: 14243523
    [No Abstract]   [Full Text] [Related]  

  • 31. Conversion of the red semiquinone of D-amino acid oxidase to the blue semiquinone by complex formation.
    Yagi K; Takai A; Oishi N
    Biochim Biophys Acta; 1972 Nov; 289(1):37-43. PubMed ID: 4404475
    [No Abstract]   [Full Text] [Related]  

  • 32. Reactions of captan and folpet with thiols.
    Liu MK; Fishbein L
    Experientia; 1967 Feb; 23(2):81-2. PubMed ID: 6032121
    [No Abstract]   [Full Text] [Related]  

  • 33. Ficin-and papain-catalyzed reactions. Changes in reactivity of the essential sulfhydryl group in the presence of substrates and competitive inhibitors.
    Whitaker JR
    Biochemistry; 1969 Nov; 8(11):4591-7. PubMed ID: 5353116
    [No Abstract]   [Full Text] [Related]  

  • 34. The reactivity of the lysyl residues of cytochrome b5.
    Ozols J; Strittmatter P
    J Biol Chem; 1966 Oct; 241(20):4793-7. PubMed ID: 5926183
    [No Abstract]   [Full Text] [Related]  

  • 35. Reaction of glyceraldehyde-3-phosphate dehydrogenase with dibromoacetone.
    Moore J; Fenselau A
    Biochemistry; 1972 Sep; 11(20):3753-62. PubMed ID: 4342026
    [No Abstract]   [Full Text] [Related]  

  • 36. APPLICATION OF A CHEMICAL DEGRADATION OF COENZYME Q TO PROBLEMS OF BIOSYNTHESIS.
    BENTLEY R; RAMSEY VG; SPRINGER CM; DIALAMEH GH; OLSON RE
    Biochemistry; 1965 Jan; 4():166-76. PubMed ID: 14285234
    [No Abstract]   [Full Text] [Related]  

  • 37. SPECTRAL IDENTIFICATION STUDIES OF PHENOLIC ACIDS USING ALUMINUM CHLORIDE.
    NAKAGAWA Y; SHETLAR MR; WENDER SH
    Anal Biochem; 1964 Mar; 7():374-8. PubMed ID: 14153301
    [No Abstract]   [Full Text] [Related]  

  • 38. The conversion of serine at the active site of subtilisin to cysteine: a "chemical mutation".
    Neet KE; Koshland DE
    Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1606-11. PubMed ID: 5230319
    [No Abstract]   [Full Text] [Related]  

  • 39. Metabolism of 3,4-dihydroxyphenylacetic acid (DOPAC) in the human.
    Alton H; Goodall M
    Biochem Pharmacol; 1969 Jun; 18(6):1373-9. PubMed ID: 5799111
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases.
    Hunkapiller MW; Smallcombe SH; Whitaker DR; Richards JH
    Biochemistry; 1973 Nov; 12(23):4732-43. PubMed ID: 4204227
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.