These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6048775)

  • 1. The thiol groups and sub-unit structure of creatine kinase.
    Bayley PM; Thomson AR
    Biochem J; 1967 Aug; 104(2):33contd-35c. PubMed ID: 6048775
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on adenosine triphosphate transphophorylases. V. Studies on the polypeptide chains of the crystalline adenosine triphosphate-creatine transphosphorylase from rabbit skeletal muscle.
    Yue RH; Palmieri RH; Olson OE; Kuby SA
    Biochemistry; 1967 Oct; 6(10):3204-27. PubMed ID: 6056983
    [No Abstract]   [Full Text] [Related]  

  • 3. The molecular basis of the heterogeneity of the MM isozyme of rabbit muscle creatine phosphokinase.
    Traugott C; Massaro EJ
    Biochim Biophys Acta; 1973 Feb; 295(2):549-54. PubMed ID: 4735513
    [No Abstract]   [Full Text] [Related]  

  • 4. [Comparative enzymologic analysis of the creatine kinases from the skeletal muscles of the cod, frog and rabbit].
    Petrova TA; Shamova OV; Lyzlova SN
    Zh Evol Biokhim Fiziol; 1988; 24(4):489-96. PubMed ID: 3206952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of rabbit muscle creatine kinase and limited proteolysis by proteinase K.
    Williamson J; Greene J; Chérif S; Milner-White EJ
    Biochem J; 1977 Dec; 167(3):731-7. PubMed ID: 603634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and molecular properties of creatine kinase from carp white muscle.
    Gosselin-Rey C; Gerday C
    Biochim Biophys Acta; 1970 Nov; 221(2):241-54. PubMed ID: 5490232
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in circular dichroism and exposure of buried thiol groups during denaturation of rabbit muscle creatine kinase.
    Yao QZ; Liang SJ; Tian M; Zou CL
    Sci Sin B; 1985 May; 28(5):484-93. PubMed ID: 4048924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit.
    Wallimann T; Schnyder T; Schlegel J; Wyss M; Wegmann G; Rossi AM; Hemmer W; Eppenberger HM; Quest AF
    Prog Clin Biol Res; 1989; 315():159-76. PubMed ID: 2678153
    [No Abstract]   [Full Text] [Related]  

  • 9. [Enzymatic hybridation, a permanent method of detecting an inactive enzyme in a tissue extract. Application to creatine kinase].
    Dreyfus JC; Allard D
    C R Acad Hebd Seances Acad Sci D; 1968 Jan; 266(2):167-9. PubMed ID: 4967821
    [No Abstract]   [Full Text] [Related]  

  • 10. Properties and reaction with iodoacetamide of adenosine 5'-triphosphate-creatine phosphotransferase from human skeletal muscle. Further evidence about the role of the essential thiol group in relation to the mechanism of action.
    Kumudavalli I; Moreland BH; Watts DC
    Biochem J; 1970 Apr; 117(3):513-23. PubMed ID: 4986834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acid sequence of the peptide containing the thiol group of creatine kinase from normal and dystrophic chicken breast muscle. Comparison of some of the immunological properties of the antibodies developed in rabbits against these enzymes.
    Roy BP
    Biochem J; 1974 Oct; 143(1):171-9. PubMed ID: 4219281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of manganese-nucleoside diphosphates to creatine kinase as determined by proton relaxation rate measurements.
    O'Sullivan WJ; Reed GH; Marsden KH; Gough GR; Lee CS
    J Biol Chem; 1972 Dec; 247(24):7839-43. PubMed ID: 4640926
    [No Abstract]   [Full Text] [Related]  

  • 13. Anomalous electrophoretic behavior of creatine kinase: a thiol-dependent isomeric system with migration subject to kinetic control.
    Doherty MD; Bergman DA; Re-Miller VM; Winzor DJ
    Arch Biochem Biophys; 1980 Jul; 202(2):558-64. PubMed ID: 7458335
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphagen kinases and evolution in the echinodermata.
    Moreland B; Watts DC; Virden R
    Nature; 1967 Apr; 214(5087):458-62. PubMed ID: 6067881
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on adenosine triphosphate transphosphorylases. 8. Homogeneity and physicochemical properties of the crystalline adenosine triphosphate--creatine transphosphorylase from calf brain.
    Yue RH; Jacobs HK; Okabe K; Keutel HJ; Kuby SA
    Biochemistry; 1968 Dec; 7(12):4291-8. PubMed ID: 5700655
    [No Abstract]   [Full Text] [Related]  

  • 16. ACID DENATURATION OF CREATINE KINASE.
    SCOPES RK
    Arch Biochem Biophys; 1965 May; 110():320-4. PubMed ID: 14342726
    [No Abstract]   [Full Text] [Related]  

  • 17. [Dynamics of quaternary structure of creatine kinase purified from rabbit skeletal muscles].
    Rozanova NA; Chetverikova EP
    Biokhimiia; 1981 Dec; 46(12):2125-35. PubMed ID: 7317534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The comparative enzymology of creatine kinases. II. Physical and chemical properties.
    Dawson DM; Eppenberger HM; Kaplan NO
    J Biol Chem; 1967 Jan; 242(2):210-7. PubMed ID: 6016605
    [No Abstract]   [Full Text] [Related]  

  • 19. [Enzymic properties of sarcoplasmic proteins from rat skeletal, cardiac and smooth muscles].
    Ivanov II; Korovkin BF; Chernienko IS
    Biokhimiia; 1966; 31(2):322-9. PubMed ID: 5999927
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of chemical modification on the acid denaturation of rabbit skeletal muscle creatine kinase.
    Birktoft JJ; Ottesen M
    Biochim Biophys Acta; 1969 Feb; 175(1):204-6. PubMed ID: 5766002
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.