BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6048806)

  • 21. Letter: Distribution of glutathione reductase in lens epithelium, cortex and nucleus in various species and in human cataractous lenses.
    Srivastava SK; Villacorte D; Arya DV
    Exp Eye Res; 1973 Sep; 16(6):519-21. PubMed ID: 4753340
    [No Abstract]   [Full Text] [Related]  

  • 22. Hexokinase, glucose-6-phosphatase dehydrogenase and aldose reductase in human fetal lenses.
    Cao X; Chen Y; Liang S; Huang Q; Li S; Mao W
    Yan Ke Xue Bao; 1991 Mar; 7(1):31-3. PubMed ID: 1843127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alterations of lens metabolism with experimentally induced cataract in rats.
    Korte I; Hockwin O; Bours J; Wegener A
    Ophthalmic Res; 1988; 20(3):174-8. PubMed ID: 2972980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supplementing glucose metabolism in human senile cataracts.
    Cheng HM; Chylack LT; von Saltza I
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):812-8. PubMed ID: 6458578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated Expression of indoleamine 2,3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats.
    Kanth VR; Lavanya K; Srinivas J; Raju TN
    Curr Eye Res; 2009 Apr; 34(4):274-81. PubMed ID: 19373575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PATHWAYS OF GLUCOSE METABOLISM IN THE LENS.
    KINOSHITA JH
    Invest Ophthalmol; 1965 Aug; 4():619-28. PubMed ID: 14340173
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of experimental diabetes on the activity of hexokinase in rat lens: an example of glucose overutilization in diabetes.
    Gonzalez AM; Sochor M; Hothersall JS; McLean P
    Biochem Biophys Res Commun; 1978 Oct; 84(4):858-64. PubMed ID: 728155
    [No Abstract]   [Full Text] [Related]  

  • 28. Mechanism of "hypoglycemic" cataract formation in the rat lens. II. Further studies on the role of hexokinase instability.
    Chylack LT; Schaefer FL
    Invest Ophthalmol; 1976 Jul; 15(7):519-28. PubMed ID: 931698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lens aldehyde reductase and dehydrogenase, and their possible involvement in diabetes and cataract formation.
    Crabbe MJ; Ting HH; Halder AB
    Prog Clin Biol Res; 1982; 114():329-46. PubMed ID: 6761710
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract.
    Sankeshi V; Kumar PA; Naik RR; Sridhar G; Kumar MP; Gopal VV; Raju TN
    J Ethnopharmacol; 2013 Aug; 149(1):215-21. PubMed ID: 23827758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lens hexokinase deactivation by near-UV irradiation.
    Tung WH; Chylack LT; Andley UP
    Curr Eye Res; 1988 Mar; 7(3):257-63. PubMed ID: 3359812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The distribution of aldose reductase and aldehyde reductase II in different regions of bovine lens.
    Liu S; Das B; Srivastava SK
    Lens Eye Toxic Res; 1989; 6(3):415-30. PubMed ID: 2518623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GLUTATHIONE PEROXIDASE IN LENS AND A SOURCE OF HYDROGEN PEROXIDE IN AQUEOUS HUMOUR.
    PIRIE A
    Biochem J; 1965 Jul; 96(1):244-53. PubMed ID: 14343138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutathione and glutathione-related enzymes in human cataractous lenses.
    Xie PY; Kanai A; Nakajima A; Kitahara S; Ohtsu A; Fujii K
    Ophthalmic Res; 1991; 23(3):133-40. PubMed ID: 1945285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of polyol pathways in formation of diabetic cataracts].
    SabasiƄski K; Andrzejewska-Buczko J
    Klin Oczna; 1997; 99(6):401-4. PubMed ID: 9685789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Regulation of crystalline lens aldose reductase activity. Nonhyperbolic oxidation kinetics of NADPH by glucose].
    Vartanov SS; Pavlov AR; Iaropolov AI
    Biokhimiia; 1990 Nov; 55(11):2046-57. PubMed ID: 2128191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NADPH-dependent reduction of glyceraldehyde: a unusually high activity in the lens of the camel (Camelus dromedarius).
    Del Corso A; Osman AM; Mohamed AS; Camici M; Barsacchi D; Tozzi MG; Mura U
    Boll Soc Ital Biol Sper; 1989 Mar; 65(3):235-42. PubMed ID: 2504255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity?
    Kilic F; Bhardwaj R; Caulfeild J; Trevithick JR
    Exp Eye Res; 1999 Sep; 69(3):291-300. PubMed ID: 10471337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lens metabolism and aging: enzyme activities and enzyme alterations in lenses of different species during the process of aging.
    Ohrloff C; Hockwin O
    J Gerontol; 1983 May; 38(3):271-7. PubMed ID: 6841921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.