These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6049293)

  • 1. Decarboxylation of alpha-keto acids by Streptococcus lactis var. maltigenes.
    Tucker JS; Morgan ME
    Appl Microbiol; 1967 Jul; 15(4):694-700. PubMed ID: 6049293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin regulation of branched chain alpha-keto acid dehydrogenase in adipose tissue.
    Frick GP; Goodman HM
    J Biol Chem; 1980 Jul; 255(13):6186-92. PubMed ID: 6993467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Branched chain alpha-keto acid oxidative decarboxylation in skeletal muscle mitochondria. Effect of isolation procedure and mitochondrial delta pH.
    Hutson SM
    J Biol Chem; 1986 Apr; 261(10):4420-5. PubMed ID: 3957903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of Streptococcus lactis var. maltigenes from other lactic streptococci.
    GORDON DF; MORGAN ME; TUCKER JS
    Appl Microbiol; 1963 Mar; 11(2):171-7. PubMed ID: 13949187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the mitochondrial branched chain aminotransferase as a branched chain alpha-keto acid transport protein.
    Hutson SM; Hall TR
    J Biol Chem; 1993 Feb; 268(5):3084-91. PubMed ID: 8428987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain alpha-ketoacid metabolism.
    Williamson JR; Wałajtys-Rode E; Coll KE
    J Biol Chem; 1979 Nov; 254(22):11511-20. PubMed ID: 500655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport of monocarboxylic oxoacids in rat liver mitochondria.
    Paradies G; Papa S
    FEBS Lett; 1975 Mar; 52(1):149-52. PubMed ID: 1123077
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of glycine oxidation by pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in rat liver mitochondria: presence of interaction between the glycine cleavage system and alpha-keto acid dehydrogenase complexes.
    Kochi H; Seino H; Ono K
    Arch Biochem Biophys; 1986 Sep; 249(2):263-72. PubMed ID: 3753002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of alpha-ketoisocaproate oxygenase. Formation of beta-hydroxyisovalerate from alpha-ketoisocaproate.
    Sabourin PJ; Bieber LL
    J Biol Chem; 1982 Jul; 257(13):7468-71. PubMed ID: 7085633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730.
    Martínez-Cuesta MC; Requena T; Peláez C
    Int J Food Microbiol; 2006 Jun; 109(3):198-204. PubMed ID: 16504327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a branched-chain alpha-keto acid decarboxylase from rat liver.
    Kean EA; Morrison EY
    Biochim Biophys Acta; 1979 Mar; 567(1):12-7. PubMed ID: 454617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.
    Hutson SM
    J Biol Chem; 1987 Jul; 262(20):9629-35. PubMed ID: 3597428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keto acids produced by Chlamydomonas reinhardti.
    Collins RP; Kalnins K
    Can J Microbiol; 1967 Aug; 13(8):995-9. PubMed ID: 6049607
    [No Abstract]   [Full Text] [Related]  

  • 14. Competition of alpha-ketobutyrate with pyruvate for the mammalian pyruvate dehydrogenase complex.
    Wingo WJ
    Ala J Med Sci; 1970 Jul; 7(3):300-4. PubMed ID: 4320319
    [No Abstract]   [Full Text] [Related]  

  • 15. Utilization of alpha-keto and alpha-hydroxy analogues of valine by the growing rat.
    Chawla RK; Rudman D
    J Clin Invest; 1974 Aug; 54(2):271-7. PubMed ID: 4367888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched chain alpha-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver alpha-ketoisocaproic:alpha-keto-beta-methylvaleric acid dehydrogenase.
    Connelly JL; Danner DJ; Bowden JA
    J Biol Chem; 1968 Mar; 243(6):1198-203. PubMed ID: 5689906
    [No Abstract]   [Full Text] [Related]  

  • 17. Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes.
    Sheldon RM; Lindsay RC; Libbey LM; Morgan ME
    Appl Microbiol; 1971 Sep; 22(3):263-6. PubMed ID: 5171205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a mitochondrial transport system for branched chain alpha-keto acids.
    Hutson SM; Rannels SL
    J Biol Chem; 1985 Nov; 260(26):14189-93. PubMed ID: 4055776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis.
    de la Plaza M; Fernández de Palencia P; Peláez C; Requena T
    FEMS Microbiol Lett; 2004 Sep; 238(2):367-74. PubMed ID: 15358422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of pyruvate and S-adenosylmethioine in activating the pyruvate formate-lyase of Escherichia coli.
    Chase T; Rabinowitz JC
    J Bacteriol; 1968 Oct; 96(4):1065-78. PubMed ID: 4879554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.