These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Sugar transport across the peritubular face of renal cells of the flounder. Kleinzeller A; McAvoy EM J Gen Physiol; 1973 Aug; 62(2):169-84. PubMed ID: 4722567 [TBL] [Abstract][Full Text] [Related]
5. Transport and metabolism of galactose in rat kidney cortex. McNamara PD; Segal S Biochem J; 1972 Oct; 129(5):1109-18. PubMed ID: 4656597 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of cellular transport processes by 5-thio-D-glucopyranose. Whistler RL; Lake WC Biochem J; 1972 Dec; 130(4):919-25. PubMed ID: 4656804 [TBL] [Abstract][Full Text] [Related]
7. Active transport of L-glucose and D-xylose in hamster intestine, in vitro. Bihler I; Kim ND; Sawh PC Can J Physiol Pharmacol; 1969 Jun; 47(6):525-32. PubMed ID: 5797394 [No Abstract] [Full Text] [Related]
8. Permeability of rat diaphragm muscle to some methyl glycosides and its relationship to monosaccharide transport. Wong HA; Randle PJ Biochem J; 1967 Feb; 102(2):618-22. PubMed ID: 6029618 [TBL] [Abstract][Full Text] [Related]
9. Renal sugar transport in the winter flounder. VI. Reabsorption of D-mannose. Pritchard JB; Booz GW; Kleinzeller A Am J Physiol; 1982 Apr; 242(4):F415-22. PubMed ID: 7065250 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of sugar transport in rabbit kidney cortex, in vitro: movement of D-galactose, 2-deoxy-D-galactose and alpha-methyl-D-glucoside. Kolińská J Biochim Biophys Acta; 1970; 219(1):200-9. PubMed ID: 5473506 [No Abstract] [Full Text] [Related]
11. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar. Barnett JE; Jarvis WT; Munday KA Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849 [TBL] [Abstract][Full Text] [Related]
12. Galactose transport across the serosal border of rabbit ileum and its role in intracellular accumulation. Holman GD; Naftalin RJ Biochim Biophys Acta; 1975 Mar; 382(2):230-45. PubMed ID: 1120157 [TBL] [Abstract][Full Text] [Related]
13. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney. Silverman M; Black J Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065 [TBL] [Abstract][Full Text] [Related]
14. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses. Scharrer E; Grenacher B J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210 [TBL] [Abstract][Full Text] [Related]
15. Sodium-dependent transport of sugars and iodide from the cerebral venticles of the rabbit. Bradbury MW; Brondsted HE J Physiol; 1973 Oct; 234(1):127-43. PubMed ID: 4766217 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen bonding requirements for the insulin-sensitive sugar transport system of rat adipocytes. Rees WD; Holman GD Biochim Biophys Acta; 1981 Aug; 646(2):251-60. PubMed ID: 7028115 [TBL] [Abstract][Full Text] [Related]
17. Uptake of monosaccharides by guinea-pig cerebral-cortex slices. Joanny P; Corriol J; Hillman H Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307 [TBL] [Abstract][Full Text] [Related]
18. Xylose transport pathways in rabbit ileum. Heyman M; Dumontier AM; Desjeux JF Am J Physiol; 1980 Apr; 238(4):G326-31. PubMed ID: 7377307 [TBL] [Abstract][Full Text] [Related]
19. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine. Birnir B; Loo DD; Wright EM Pflugers Arch; 1991 Mar; 418(1-2):79-85. PubMed ID: 2041729 [TBL] [Abstract][Full Text] [Related]
20. Relationship between transport of D-xylose and other monosaccharides in jejunal mucosa of children. Heyman M; Desjeux JF; Grasset E; Dumontier AM; Lestradet H Gastroenterology; 1981 Apr; 80(4):758-62. PubMed ID: 7202947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]