BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6051341)

  • 1. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1967 Oct; 94(4):1034-9. PubMed ID: 6051341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1966 Aug; 92(2):424-32. PubMed ID: 16562131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pipecolic acid biosynthesis in Rhizoctonia leguminicola. I. The lysine saccharopine, delta 1-piperideine-6-carboxylic acid pathway.
    Wickwire BM; Harris CM; Harris TM; Broquist HP
    J Biol Chem; 1990 Sep; 265(25):14742-7. PubMed ID: 2118517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.
    Chang YF; Adams E
    J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
    Muramatsu H; Mihara H; Kakutani R; Yasuda M; Ueda M; Kurihara T; Esaki N
    J Biol Chem; 2005 Feb; 280(7):5329-35. PubMed ID: 15561717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pipecolic acid biosynthesis in Rhizoctonia leguminicola. II. Saccharopine oxidase: a unique flavin enzyme involved in pipecolic acid biosynthesis.
    Wickwire BM; Wagner C; Broquist HP
    J Biol Chem; 1990 Sep; 265(25):14748-53. PubMed ID: 2394693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase.
    Calvert AF; Rodwell VW
    J Biol Chem; 1966 Jan; 241(2):409-14. PubMed ID: 4285660
    [No Abstract]   [Full Text] [Related]  

  • 8. Separation of the primary dehydrogenase from the cytochromes of the nicotinamide adenine dinucleotide (reduced form) oxidase of Bacillus megaterium.
    Yu L; Wolin MJ
    J Bacteriol; 1972 Jan; 109(1):59-68. PubMed ID: 4333382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and some properties of reduced diphosphopyridine nucleotide: 2,6-dichlorophenolindophenol soluble reductase from Mycobacterium phlei.
    Zagórski W; Kaniuga Z
    Acta Microbiol Pol; 1967; 16(2):91-9. PubMed ID: 4168405
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic synthesis of L-pipecolic acid by Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida.
    Muramatsu H; Mihara H; Yasuda M; Ueda M; Kurihara T; Esaki N
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2296-8. PubMed ID: 16960365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay of delta 1-piperideine-2-carboxylate and synthesis of L-[14C]pipecolate from DL-[14C]pipecolate.
    Chang YF; Charles AK; Tilkin RB
    Anal Biochem; 1982 Sep; 125(2):376-85. PubMed ID: 7181096
    [No Abstract]   [Full Text] [Related]  

  • 12. delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.
    Payton CW; Chang YF
    J Bacteriol; 1982 Mar; 149(3):864-71. PubMed ID: 6801013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-D-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification.
    Wang DM; Sun L; Sun WJ; Cui FJ; Gong JS; Zhang XM; Shi JS; Xu ZH
    Appl Biochem Biotechnol; 2019 Aug; 188(4):897-913. PubMed ID: 30729393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of NikD, a new flavoenzyme important in the biosynthesis of nikkomycin antibiotics.
    Venci D; Zhao G; Jorns MS
    Biochemistry; 2002 Dec; 41(52):15795-802. PubMed ID: 12501208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-pipecolate oxidase: a distinct peroxisomal enzyme in man.
    Wanders RJ; Romeyn GJ; Schutgens RB; Tager JM
    Biochem Biophys Res Commun; 1989 Oct; 164(1):550-5. PubMed ID: 2572224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavensomycin, an inhibitor of enzyme reactions involving hydrogen transfer.
    Gottlieb D; Inoue Y
    J Bacteriol; 1967 Oct; 94(4):844-9. PubMed ID: 4383133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-pipecolic acid metabolism in human liver: detection of L-pipecolate oxidase and identification of its reaction product.
    Rao VV; Chang YF
    Biochim Biophys Acta; 1990 May; 1038(3):295-9. PubMed ID: 2340290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and expression of human L-pipecolate oxidase.
    IJlst L; de Kromme I; Oostheim W; Wanders RJ
    Biochem Biophys Res Commun; 2000 Apr; 270(3):1101-5. PubMed ID: 10772957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 3.0-A resolution.
    Mathews FS; Chen ZW; Bellamy HD; McIntire WS
    Biochemistry; 1991 Jan; 30(1):238-47. PubMed ID: 1846290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.