These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 6052439)
1. Biosynthesis of starch in Chlorella pyrenoidosa. II. Regulation of ATP: alpha-D-glucose 1-phosphate adenyl transferase (ADP-glucose pyrophosphorylase) by inorganic phosphate and 3-phosphoglycerate. Sanwal GG; Preiss J Arch Biochem Biophys; 1967 Mar; 119(1):454-69. PubMed ID: 6052439 [No Abstract] [Full Text] [Related]
2. Biosynthesis of starch in Chlorella pyrenoidosa. I. Purification and properties of the adenosine diphosphoglucose: alpha-1, 4-glucan, alpha-4-glucosyl transferase from Chlorella. Preiss J; Greenberg E Arch Biochem Biophys; 1967 Mar; 118(3):702-8. PubMed ID: 6057640 [No Abstract] [Full Text] [Related]
3. POSSIBLE MECHANISMS CONTROLLING THE INTRACELLULAR LEVEL OF INORGANIC POLYPHOSPHATE DURING SYNCHRONOUS GROWTH OF CHLORELLA PYRENOIDOSA. II. ATP/ADP RATIO. CURNUTT SG; SCHMIDT RR Biochim Biophys Acta; 1964 Apr; 86():201-3. PubMed ID: 14166865 [No Abstract] [Full Text] [Related]
5. Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers. Loef I; Stitt M; Geigenberger P Planta; 2001 Apr; 212(5-6):782-91. PubMed ID: 11346952 [TBL] [Abstract][Full Text] [Related]
6. THE RELATION OF THE ATP-ADP EXCHANGE ACTIVITY TO PHOTOPHOSPHORYLATION AND TO 3-PHOSPHOGLYCERATE KINASE IN SPINACH CHLOROPLASTS. KAHN JS Biochim Biophys Acta; 1964 Mar; 79():421-3. PubMed ID: 14163531 [No Abstract] [Full Text] [Related]
7. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. Ghosh HP; Preiss J J Biol Chem; 1966 Oct; 241(19):4491-504. PubMed ID: 5922972 [No Abstract] [Full Text] [Related]
8. POSSIBLE MECHANISMS CONTROLLING THE INTRACELLULAR LEVEL OF INORGANIC POLYPHOSPHATE DURING SYNCHRONOUS GROWTH OF CHLORELLA PYRENOIDOSA; ENDOGENOUS RESPIRATION. CURNUTT SG; SCHMIDT RR Exp Cell Res; 1964 Oct; 36():102-10. PubMed ID: 14222731 [No Abstract] [Full Text] [Related]
9. A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. Kleczkowski LA FEBS Lett; 1999 Apr; 448(1):153-6. PubMed ID: 10217430 [TBL] [Abstract][Full Text] [Related]
10. MECHANISM OF GLUCOSE TRANSFER FROM SUCROSE INTO THE STARCH GRANULE OF SWEET CORN. RONGINEDEFEKETE MA; CARDINI CE Arch Biochem Biophys; 1964 Jan; 104():173-84. PubMed ID: 14110713 [No Abstract] [Full Text] [Related]
11. Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. Bahaji A; Li J; Ovecka M; Ezquer I; Muñoz FJ; Baroja-Fernández E; Romero JM; Almagro G; Montero M; Hidalgo M; Sesma MT; Pozueta-Romero J Plant Cell Physiol; 2011 Jul; 52(7):1162-76. PubMed ID: 21624897 [TBL] [Abstract][Full Text] [Related]
12. The influence of Mg2+-adenine nucleotide ratios and absolute concentration of Mg2+-adenine nucleotide on the observed velocity of some kinase reactions. Garner PS; Rosett T FEBS Lett; 1973 Aug; 34(2):243-6. PubMed ID: 4355909 [No Abstract] [Full Text] [Related]
13. The conversion of adenosine 5'-phosphate into adenosine triphosphate as catalysed by adenosine triphosphate--creatine phosphotransferase and adenosine triphosphate--adenosine monophosphate phosphotransferase in the presence of phosphocreatine. DOHERTY MD; MORRISON JF Biochem J; 1963 Feb; 86(2):344-50. PubMed ID: 14028385 [No Abstract] [Full Text] [Related]
14. ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope. Möhlmann T; Tjaden J; Henrichs G; Quick WP; Häusler R; Neuhaus HE Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):503-9. PubMed ID: 9182710 [TBL] [Abstract][Full Text] [Related]
15. [ACETATE ACTIVATION IN GREEN ALGAE. II. THE FORMATION OF ACETYL PHOSPHATE IN STICHOCOCCUS BACILLARIS AND OTHER SPECIES OF CHLOROCOCCALES]. OHMANN E Biochim Biophys Acta; 1964 Aug; 90():249-59. PubMed ID: 14220710 [No Abstract] [Full Text] [Related]
16. KINETIC STUDIES ON THE REACTION CATALYZED BY PHOSPHOGLYCERATE KINASE. I. THE EFFECT OF MG2+ AND ADENOSINE 5'-TRIPHOSPHATE. LARSSON RAZNIKIEWICZ M Biochim Biophys Acta; 1964 Apr; 85():60-8. PubMed ID: 14159303 [No Abstract] [Full Text] [Related]
18. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Veech RL; Raijman L; Krebs HA Biochem J; 1970 Apr; 117(3):499-503. PubMed ID: 4315932 [TBL] [Abstract][Full Text] [Related]
19. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Tuncel A; Kawaguchi J; Ihara Y; Matsusaka H; Nishi A; Nakamura T; Kuhara S; Hirakawa H; Nakamura Y; Cakir B; Nagamine A; Okita TW; Hwang SK; Satoh H Plant Cell Physiol; 2014 Jun; 55(6):1169-83. PubMed ID: 24747952 [TBL] [Abstract][Full Text] [Related]
20. SEPARATION, IDENTIFICATION, AND QUANTITATIVE DETERMINATION OF P 32-LABELED PHOSPHATE ESTERS FROM ERYTHROCYTES. VANDERHEIDEN BS Anal Biochem; 1964 May; 8():1-19. PubMed ID: 14167270 [No Abstract] [Full Text] [Related] [Next] [New Search]