These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 6052957)
1. The role of alpha--beta glucose-6-phosphate interconversion in erythrocyte carbohydrate metabolism. Oski FA; Rose IA J Lab Clin Med; 1967 Oct; 70(4):535-8. PubMed ID: 6052957 [No Abstract] [Full Text] [Related]
2. [Studies on the erythrocyte carbohydrate metabolism in various conditions]. Ishida K Nihon Naika Gakkai Zasshi; 1968 Feb; 57(1):88-104. PubMed ID: 4874321 [No Abstract] [Full Text] [Related]
3. Rates of oxidation of galactose and glucose in erythrocytes and liver after lactose feeding. CHOWDHURY A; SADHU DP Biochem J; 1959 Apr; 71(4):624-6. PubMed ID: 13651106 [No Abstract] [Full Text] [Related]
4. Galactose metabolism in the newborn infant. Donnell GN; Ng WG; Hodgman JE; Bergren WR Pediatrics; 1967 Jun; 39(6):829-37. PubMed ID: 6026549 [No Abstract] [Full Text] [Related]
5. Investigations on the existence of a specific retention of D-glucose by the human erythrocyte membrane. Moller JV Biochim Biophys Acta; 1971 Oct; 249(1):96-100. PubMed ID: 5141136 [No Abstract] [Full Text] [Related]
6. Phosphate uptake and glycolysis in human erythrocytes heated in vitro. NATVIG RA; SKAUG OE Scand J Clin Lab Invest; 1957; 9(1):44-9. PubMed ID: 13432632 [No Abstract] [Full Text] [Related]
7. Glucose metabolism in normal erythrocytes: II factors influencing the hexokinase step. De Verdier CH; Garby L Scand J Haematol; 1965; 2(4):305-17. PubMed ID: 5867427 [No Abstract] [Full Text] [Related]
8. An alternative to the carrier model for sugar transport across red cell membranes. Naftalin RJ Biomembranes; 1972; 3():117-26. PubMed ID: 4666509 [No Abstract] [Full Text] [Related]
9. Properties of aldose carriers in human erythrocytes during preservation of whole blood in ACD solution. Bican P; Lacko L Transfusion; 1966; 6(2):130-3. PubMed ID: 5909600 [No Abstract] [Full Text] [Related]
10. The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane. Levine M; Oxender DL; Stein WD Biochim Biophys Acta; 1965 Sep; 109(1):151-63. PubMed ID: 5864008 [No Abstract] [Full Text] [Related]
11. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. Travis SF; Morrison AD; Clements RS; Winegrad AI; Oski FA J Clin Invest; 1971 Oct; 50(10):2104-12. PubMed ID: 4398937 [TBL] [Abstract][Full Text] [Related]
12. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. Lichtman MA; Miller DR J Lab Clin Med; 1970 Aug; 76(2):267-79. PubMed ID: 5434006 [No Abstract] [Full Text] [Related]
13. Influence of hemoglobin precipitation on erythrocyte metabolism in alpha and beta thalassemia. Nathan DG; Stossel TB; Gunn RB; Zarkowsky HS; Laforet MT J Clin Invest; 1969 Jan; 48(1):33-41. PubMed ID: 5765025 [TBL] [Abstract][Full Text] [Related]
14. Glycolysis of heat damaged red cells in relation to common blood groups. Baar S Br J Exp Pathol; 1973 Jun; 54(3):322-8. PubMed ID: 4718271 [TBL] [Abstract][Full Text] [Related]
15. Glucose-galactose malabsorption. A study on the transfer of glucose across the red cell membrane. Meeuwisse GW Scand J Clin Lab Invest; 1970 Mar; 25(2):145-9. PubMed ID: 5457105 [No Abstract] [Full Text] [Related]
16. Defective galactose oxidation in a patient with glycogen storage disease and Fanconi syndrome. Brivet M; Moatti N; Corriat A; Lemonnier A; Odievre M Pediatr Res; 1983 Feb; 17(2):157-61. PubMed ID: 6572355 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate. Hengstenberg W; Egan JB; Morse ML Proc Natl Acad Sci U S A; 1967 Jul; 58(1):274-9. PubMed ID: 4292101 [No Abstract] [Full Text] [Related]
18. Enzyme kinetics in mammalian cells. 3. Regulation of activities of galactokinase, galactose-1-phosphate uridyl transferase and uridine diphosphogalactose-4-epimerase in human erythrocytes. Hill HZ J Cell Physiol; 1971 Dec; 78(3):419-30. PubMed ID: 4334370 [No Abstract] [Full Text] [Related]
19. Channeling of alpha-D-glucose 6-phosphate in tumoral islet cells exposed to D-galactose. Malaisse WJ; Malaisse-Lagae F; Sener A J Biol Chem; 1987 Aug; 262(24):11746-51. PubMed ID: 3040714 [TBL] [Abstract][Full Text] [Related]
20. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. II. Experiments with glucose-6-phosphate dehydrogenase-deficient erythrocytes]. Brand K; Arese P; Rivera M Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):509-14. PubMed ID: 4392679 [No Abstract] [Full Text] [Related] [Next] [New Search]