These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 6053242)
1. Interaction between adenine, guanine and thymine in deoxyoligonucleotides: a proton magnetic resonance study. Scheit KH; Cramer F; Franke A Biochim Biophys Acta; 1967 Aug; 145(1):21-6. PubMed ID: 6053242 [No Abstract] [Full Text] [Related]
2. Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5'-phosphate and other nucleotides. Sternglanz H; Yielding KL; Pruitt KM Mol Pharmacol; 1969 Jul; 5(4):376-81. PubMed ID: 5803387 [No Abstract] [Full Text] [Related]
3. Study of the hydrogen bonding in the adenine-thymine, adenine-cytosine, and guanine-thymine base pairs. Lunell S; Sperber G J Chem Phys; 1967 Mar; 46(6):2119-24. PubMed ID: 6046572 [No Abstract] [Full Text] [Related]
4. Proton nuclear magnetic resonance investigations and ring current calculations of guanine N-1 and thymine N-3 hydrogen-bonded protons in double-helical deoxyribonucleotides in aqueous solution. Patel DJ; Tonelli AE Proc Natl Acad Sci U S A; 1974 May; 71(5):1945-8. PubMed ID: 4525304 [TBL] [Abstract][Full Text] [Related]
5. Nuclear magnetic resonance study of hydrogen-bonded ring protons in Watson-Crick base pairs. Crothers DM; Hilbers CW; Shulman RG Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2899-901. PubMed ID: 4517943 [TBL] [Abstract][Full Text] [Related]
6. [ON MOBILITY OF PURINES AND PYRIMIDINE BASES AND THEIR DERIVATIVES DURING ELECTROPHORETIC SEPARATION]. KASATKIN IN; FEDOROV NA Lab Delo; 1964; 10():156-9. PubMed ID: 14141935 [No Abstract] [Full Text] [Related]
7. The role of the reaction force to characterize local specific interactions that activate the intramolecular proton transfers in DNA basis. Herrera B; Toro-Labbe A J Chem Phys; 2004 Oct; 121(15):7096-102. PubMed ID: 15473775 [TBL] [Abstract][Full Text] [Related]
8. Theoretical investigation of the proton transfer mechanism in guanine-cytosine and adenine-thymine base pairs. Xiao S; Wang L; Liu Y; Lin X; Liang H J Chem Phys; 2012 Nov; 137(19):195101. PubMed ID: 23181336 [TBL] [Abstract][Full Text] [Related]
9. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers. Holland JG; Malin JN; Jordan DS; Morales E; Geiger FM J Am Chem Soc; 2011 Mar; 133(8):2567-70. PubMed ID: 21291217 [TBL] [Abstract][Full Text] [Related]
10. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study. Romero EE; Hernandez FE Phys Chem Chem Phys; 2018 Jan; 20(2):1198-1209. PubMed ID: 29242886 [TBL] [Abstract][Full Text] [Related]
11. [SEPARATION OF DNA COMPONENTS ON CELLULOSE LAYERS]. KECK K; HAGEN U Biochim Biophys Acta; 1964 Aug; 87():685-7. PubMed ID: 14220699 [No Abstract] [Full Text] [Related]
12. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study. Gorb L; Podolyan Y; Dziekonski P; Sokalski WA; Leszczynski J J Am Chem Soc; 2004 Aug; 126(32):10119-29. PubMed ID: 15303888 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen-15 chemical shifts in AT (adenine-thymine) and CG (cytosine-guanine) nucleic acid base pairs. Facelli JC J Biomol Struct Dyn; 1998 Dec; 16(3):619-29. PubMed ID: 10052618 [TBL] [Abstract][Full Text] [Related]
14. Na+, Mg2+, and Zn2+ binding to all tautomers of adenine, cytosine, and thymine and the eight most stable keto/enol tautomers of guanine: a correlated ab initio quantum chemical study. Kabelác M; Hobza P J Phys Chem B; 2006 Jul; 110(29):14515-23. PubMed ID: 16854164 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular interaction of thymine and adenine bases in synthetic oligo- and polynucleotide models. Sakuma Y; Inaki Y; Takemoto K Nucleic Acids Symp Ser; 1982; (11):269-72. PubMed ID: 7183965 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical basis of the recognition process in nucleic acid interactions. 3. Proton magnetic resonance studies on the interactions of polyuridylic acid and polycytidylic acid with nucleosides, 5'-nucleotides, and nucleoside triphosphates. Ts'o PO; Schweizer MP Biochemistry; 1968 Aug; 7(8):2636-71. PubMed ID: 5666744 [No Abstract] [Full Text] [Related]
17. Actinomycin D-mononucleotide interactions as studied by proton magnetic resonance. Krugh TR; Neely JW Biochemistry; 1973 Apr; 12(9):1775-82. PubMed ID: 4699237 [No Abstract] [Full Text] [Related]
18. Measurements of single nucleotide electronic states as nanoelectronic fingerprints for identification of DNA nucleobases, their protonated and unprotonated states, isomers, and tautomers. Ribot JC; Chatterjee A; Nagpal P J Phys Chem B; 2015 Apr; 119(15):4968-74. PubMed ID: 25793310 [TBL] [Abstract][Full Text] [Related]
19. Cu2+/+ cation coordination to adenine--thymine base pair. Effects on intermolecular proton-transfer processes. Noguera M; Bertran J; Sodupe M J Phys Chem B; 2008 Apr; 112(15):4817-25. PubMed ID: 18358032 [TBL] [Abstract][Full Text] [Related]
20. Stacking conformation of 9-[omega-(thymin-1-yl)alkyl]adenine in aqueous solution. Itahara T Nucleosides Nucleotides Nucleic Acids; 2003 Mar; 22(3):309-17. PubMed ID: 12816389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]