These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 6056745)
21. Isotopic labelling of nucleic acids in sea urchin embryos developing from animal and vegetal halves in relation to protein and nucleic acid content. Markman B Exp Cell Res; 1967 Apr; 46(1):1-18. PubMed ID: 6025280 [No Abstract] [Full Text] [Related]
22. Displacement of valine from intact sea-urchin eggs by exogenous amino acids. Piatigorsky J; Tyler A J Cell Sci; 1968 Dec; 3(4):515-27. PubMed ID: 5751142 [No Abstract] [Full Text] [Related]
23. Production of a naphthoquinone pigment by a species of Streptoverticillium and its accumulation by a streptomycete. Tresner HD; Hayes JA; Borders DB Appl Microbiol; 1971 Mar; 21(3):562-3. PubMed ID: 5553290 [TBL] [Abstract][Full Text] [Related]
24. 2,2'-dimethoxy-4a,4a'-dehydrorugulosin (rugulin), a minor metabolite from Penicillium rugulosum. Sedmera P; Podojil M; Vokoun J; Betina V; Nemec P Folia Microbiol (Praha); 1978; 23(1):64-7. PubMed ID: 564320 [TBL] [Abstract][Full Text] [Related]
25. [Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs]. Lebedev AV; Ivanova MV; Krasnovid NI; Kol'tsova EA Vopr Med Khim; 1999; 45(2):123-30. PubMed ID: 10378300 [TBL] [Abstract][Full Text] [Related]
26. Trichophytons: chemical classification and the isolation of tonsopurpurin and steroid E. Ho van Hap A; Omelon JA; Duncan GR; Walker GC Can J Microbiol; 1965 Oct; 11(5):869-76. PubMed ID: 5883896 [No Abstract] [Full Text] [Related]
27. [Biogenesis of plant pigments. 1. Comparative study of the incorporation of shikimic 14C-1,2 and trans-cinnamic 14C-3 acids in two anthocyanic pigment derivatives of delphinidine and cyanidine]. Pla J; Ville A; Pachéco H Bull Soc Chim Biol (Paris); 1967; 49(4):395-413. PubMed ID: 6060513 [No Abstract] [Full Text] [Related]
28. Short and regiospecific synthesis of echinamine A--the pigment of sea urchin Scaphechinus mirabilis. Polonik NS; Anufriev VP; Polonik SG Nat Prod Commun; 2011 Feb; 6(2):217-22. PubMed ID: 21425678 [TBL] [Abstract][Full Text] [Related]
29. On the mechanism of decarboxylation of betanidine. A contribution to the interpretation of the biosynthesis of betalaines. Dunkelblum E; Miller HE; Dreiding AS Helv Chim Acta; 1972 Mar; 55(2):642-8. PubMed ID: 5023155 [No Abstract] [Full Text] [Related]
30. Echinoderms: their culture and bioactive compounds. Kelly MS Prog Mol Subcell Biol; 2005; 39():139-65. PubMed ID: 17152697 [TBL] [Abstract][Full Text] [Related]
31. Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome. Rubilar T; Barbieri ES; Gazquez A; Avaro M Mar Drugs; 2021 May; 19(5):. PubMed ID: 34064550 [No Abstract] [Full Text] [Related]
32. Extraction, structural characterization and stability of polyhydroxylated naphthoquinones from shell and spine of New Zealand sea urchin (Evechinus chloroticus). Hou Y; Vasileva EA; Mishchenko NP; Carne A; McConnell M; Bekhit AEA Food Chem; 2019 Jan; 272():379-387. PubMed ID: 30309558 [TBL] [Abstract][Full Text] [Related]
33. Hypalocrinins, Taurine-Conjugated Anthraquinone and Biaryl Pigments from the Deep Sea Crinoid Hypalocrinus naresianus. Wolkenstein K; Fuentes-Monteverde JC; Nath N; Oji T; Griesinger C J Nat Prod; 2019 Jan; 82(1):163-167. PubMed ID: 30596488 [TBL] [Abstract][Full Text] [Related]
34. [Biosynthesis of naphthoquinoine pigments in plants from Boraginaceae family in nature and in vitro culture]. Poronnik OA; Kunakh VA Ukr Biokhim Zh (1999); 2005; 77(6):24-36. PubMed ID: 19618739 [TBL] [Abstract][Full Text] [Related]
35. NAPHTHAQUINONE BIOSYNTHESIS IN MOULDS: THE MECHANISM FOR FORMATION OF JAVANICIN. GATENBECK S; BENTLEY R Biochem J; 1965 Feb; 94(2):478-81. PubMed ID: 14348208 [TBL] [Abstract][Full Text] [Related]
36. Factors involved in cyclic protein synthesis in sea urchin cells during early embrogesis. Mano Y J Biochem; 1969 Mar; 65(3):483-7. PubMed ID: 5789192 [No Abstract] [Full Text] [Related]
37. Nuclear magnetic resonance spectra of substituted naphthoquinones. Influence of substituents on tautomerism, anisotropy, and stereochemistry in the naphthazarin system. Moore RE; Scheuer PJ J Org Chem; 1966 Oct; 31(10):3272-83. PubMed ID: 5917474 [No Abstract] [Full Text] [Related]
38. An analysis of acid polysaccharides produced at fertilization of sea urchin. Ishihara K Exp Cell Res; 1968; 51(2-3):473-84. PubMed ID: 5317777 [No Abstract] [Full Text] [Related]
39. Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification. Wolkenstein K Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2794-9. PubMed ID: 25730856 [TBL] [Abstract][Full Text] [Related]
40. Naphthoquinone biosynthesis in molds. The mechanism for formation of mollisin. Bentley R; Gatenbeck S Biochemistry; 1965 Jun; 4(6):1150-6. PubMed ID: 5840001 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]