BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6056983)

  • 1. Studies on adenosine triphosphate transphophorylases. V. Studies on the polypeptide chains of the crystalline adenosine triphosphate-creatine transphosphorylase from rabbit skeletal muscle.
    Yue RH; Palmieri RH; Olson OE; Kuby SA
    Biochemistry; 1967 Oct; 6(10):3204-27. PubMed ID: 6056983
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on adenosine triphosphate transphosphorylases. 8. Homogeneity and physicochemical properties of the crystalline adenosine triphosphate--creatine transphosphorylase from calf brain.
    Yue RH; Jacobs HK; Okabe K; Keutel HJ; Kuby SA
    Biochemistry; 1968 Dec; 7(12):4291-8. PubMed ID: 5700655
    [No Abstract]   [Full Text] [Related]  

  • 3. Heterogeneity of rabbit muscle creatine kinase and limited proteolysis by proteinase K.
    Williamson J; Greene J; Chérif S; Milner-White EJ
    Biochem J; 1977 Dec; 167(3):731-7. PubMed ID: 603634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The preparation and properties of a helix-rich fraction obtained by partial proteolysis of low sulfur S-carboxymethylkerateine from wool.
    Crewther WG; Harrap BS
    J Biol Chem; 1967 Oct; 242(19):4310-9. PubMed ID: 6072928
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on adenosine triphosphate transphosphorylases. XI. Isolation of the crystalline adenosine triphosphate-creatine transphosphorylases from the muscle and brain of man, calf, and rabbit; and a preparation of their enzymatically active hybrids.
    Keutel HJ; Okabe K; Jacobs HK; Ziter F; Maland L; Kuby SA
    Arch Biochem Biophys; 1972 Jun; 150(2):648-78. PubMed ID: 5044047
    [No Abstract]   [Full Text] [Related]  

  • 6. The thiol groups and sub-unit structure of creatine kinase.
    Bayley PM; Thomson AR
    Biochem J; 1967 Aug; 104(2):33contd-35c. PubMed ID: 6048775
    [No Abstract]   [Full Text] [Related]  

  • 7. Properties and reaction with iodoacetamide of adenosine 5'-triphosphate-creatine phosphotransferase from human skeletal muscle. Further evidence about the role of the essential thiol group in relation to the mechanism of action.
    Kumudavalli I; Moreland BH; Watts DC
    Biochem J; 1970 Apr; 117(3):513-23. PubMed ID: 4986834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further evidence for the role of the essential thiol groups in adenosine triphosphate-creatine phosphotransferase from a comparison of the human and rabbit enzymes.
    Watts DC; Kumudavalli I
    Biochem J; 1970 Jun; 118(2):22P-23P. PubMed ID: 5530187
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on adenosine triphosphate transphosphorylases. X. Reactivity and anlysis of the sulfhydryl groups of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Okabe K; Jacobs HK; Kuby SA
    J Biol Chem; 1970 Dec; 245(24):6498-510. PubMed ID: 5529899
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparative structural properties of honeybee and rabbit alpha-glycerophosphate dehydrogenases.
    Brosemer RW; Kuhn RW
    Biochemistry; 1969 May; 8(5):2095-105. PubMed ID: 4307630
    [No Abstract]   [Full Text] [Related]  

  • 11. Isolation and molecular properties of creatine kinase from carp white muscle.
    Gosselin-Rey C; Gerday C
    Biochim Biophys Acta; 1970 Nov; 221(2):241-54. PubMed ID: 5490232
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on adenosine triphosphate transphosphorylases. IX. Kinetic properties of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Jacobs HK; Kuby SA
    J Biol Chem; 1970 Jul; 245(13):3305-14. PubMed ID: 5459635
    [No Abstract]   [Full Text] [Related]  

  • 13. Threonine deaminase from Salmonella typhimurium. II. The subunit structure.
    Zarlengo MH; Robinson GW; Burns RO
    J Biol Chem; 1968 Jan; 243(1):186-91. PubMed ID: 4867477
    [No Abstract]   [Full Text] [Related]  

  • 14. [Carboxyl terminal structure of ATP:L-arginine phosphotransferases of molecular weight 43,000 (Homarus vulgaris) and 86,000 (Sipunculus nudus)].
    Regnouf F; Pradel LA; Kassab R; Nguyen-Van-Thoai
    Biochim Biophys Acta; 1969 Dec; 194(2):540-7. PubMed ID: 5366916
    [No Abstract]   [Full Text] [Related]  

  • 15. The molecular basis of the heterogeneity of the MM isozyme of rabbit muscle creatine phosphokinase.
    Traugott C; Massaro EJ
    Biochim Biophys Acta; 1973 Feb; 295(2):549-54. PubMed ID: 4735513
    [No Abstract]   [Full Text] [Related]  

  • 16. [Comparative enzymologic analysis of the creatine kinases from the skeletal muscles of the cod, frog and rabbit].
    Petrova TA; Shamova OV; Lyzlova SN
    Zh Evol Biokhim Fiziol; 1988; 24(4):489-96. PubMed ID: 3206952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of rabbit phosphoglucose isomerase isozymes.
    Yoshida A; Carter ND
    Biochim Biophys Acta; 1969 Nov; 194(1):151-60. PubMed ID: 5389444
    [No Abstract]   [Full Text] [Related]  

  • 18. Preparation and properties of creatine kinase from the breast muscle of normal and dystrophic chicken (Gallus domesticus).
    Roy BP; Laws JF; Thomson AR
    Biochem J; 1970 Nov; 120(1):177-85. PubMed ID: 5494223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical studies on the subunit structure of rabbit muscle phosphoglucose isomerase. Identification of N-acetylated NH 2 -terminal alanine and COOH-terminal glutamine.
    James GT; Notmann EA
    J Biol Chem; 1973 Jan; 248(2):730-7. PubMed ID: 4684699
    [No Abstract]   [Full Text] [Related]  

  • 20. Substrate-induced dissociation of rabbit muscle aldolase into active subunits.
    Woodfin BM
    Biochem Biophys Res Commun; 1967 Nov; 29(3):288-93. PubMed ID: 6076234
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.