These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6057491)

  • 1. Absorption of phytol from dietary chlorophyll in the rat.
    Baxter JH; Steinberg D
    J Lipid Res; 1967 Nov; 8(6):615-20. PubMed ID: 6057491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption of chlorophyll phytol in normal man and in patients with Refsum's disease.
    Baxter JH
    J Lipid Res; 1968 Sep; 9(5):636-41. PubMed ID: 4177872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and metabolism of uniformly 14C-labeled phytol and phytanic acid by the intestine of the rat studied with thoracic duct cannulation.
    Baxter JH; Steinberg D; Mize CE; Avigan J
    Biochim Biophys Acta; 1967 Apr; 137(2):277-90. PubMed ID: 4167617
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of phytol-U-14C and phytanic acid-U-14C in the rat.
    Mize CE; Avigan J; Baxter JH; Fales HM; Steinberg D
    J Lipid Res; 1966 Sep; 7(5):692-7. PubMed ID: 5971048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of DL-[2-14C]mevalonic acid lactone into beta-carotene and the phytol side chain of chlorophyll in cotyledons of four species of pine seedlings.
    Wieckowski S; Goodwin TW
    Biochem J; 1967 Oct; 105(1):89-92. PubMed ID: 6060454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro conversion of phytol to phytanic acid in rat liver: subcellular distribution of activity and chemical characterization of intermediates using a new bromination technique.
    Muralidharan FN; Muralidharan VB
    Biochim Biophys Acta; 1985 Jun; 835(1):36-40. PubMed ID: 4005274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of increases of phytol and chlorophyllide by enzymatic dephytylation of chlorophylls in smoothie made from spinach leaves.
    Narai-Kanayama A; Yokosaka SI; Seo Y; Mikami K; Yoshino T; Matsuda H
    J Food Sci; 2023 Jun; 88(6):2385-2396. PubMed ID: 37122139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of fatty aldehyde dehydrogenase in the breakdown of phytol to phytanic acid.
    van den Brink DM; van Miert JN; Dacremont G; Rontani JF; Jansen GA; Wanders RJ
    Mol Genet Metab; 2004 May; 82(1):33-7. PubMed ID: 15110319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803.
    Vavilin D; Vermaas W
    Biochim Biophys Acta; 2007 Jul; 1767(7):920-9. PubMed ID: 17499209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytenic acid: identification of five isomers in chemical and biological products of phytol.
    Baxter JH; Milne GW
    Biochim Biophys Acta; 1969 Mar; 176(2):265-77. PubMed ID: 5775947
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolism of long-chain isoprenoid alcohols. Incorporation of phytol and dihydrophytol into the lipids of rat brain.
    Su KL; Schmid HH
    Biochim Biophys Acta; 1975 Jan; 380(1):119-26. PubMed ID: 1122306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tail of chlorophyll: Fates for phytol.
    Durrett TP; Welti R
    J Biol Chem; 2021; 296():100802. PubMed ID: 34022219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the final step in the conversion of phytol into phytanic acid.
    van den Brink DM; van Miert JN; Dacremont G; Rontani JF; Wanders RJ
    J Biol Chem; 2005 Jul; 280(29):26838-44. PubMed ID: 15866875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of DL-ethionine on the intestinal absorption and transport of palmitic acid-1-14C and tripalmitin-14C. Role of intramucosal factors in the uptake of luminal lipids.
    Kessler JI; Mishkin S; Stein J
    J Clin Invest; 1969 Aug; 48(8):1397-407. PubMed ID: 5819560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dietary phytol and phytanic acid in animals.
    Steinberg D; Avigan J; Mize CE; Baxter JH; Cammermeyer J; Fales HM; Highet PF
    J Lipid Res; 1966 Sep; 7(5):684-91. PubMed ID: 4165840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis.
    Vom Dorp K; Hölzl G; Plohmann C; Eisenhut M; Abraham M; Weber AP; Hanson AD; Dörmann P
    Plant Cell; 2015 Oct; 27(10):2846-59. PubMed ID: 26452599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of ingested glyceran esters of condensed castor oil fatty acids [polyglycerol polyricinoleate (PGPR)] in the rat.
    Howes D; Wilson R; James CT
    Food Chem Toxicol; 1998; 36(9-10):719-38. PubMed ID: 9737418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of refined and virgin edible oils by means of the trans- and cis-phytol isomer distribution.
    Vetter W; Schröder M; Lehnert K
    J Agric Food Chem; 2012 Jun; 60(24):6103-7. PubMed ID: 22642869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and quantification of metallo-chlorophyll complexes in bright green table olives by high-performance liquid chromatrography-mass spectrometry quadrupole/time-of-flight.
    Aparicio-Ruiz R; Riedl KM; Schwartz SJ
    J Agric Food Chem; 2011 Oct; 59(20):11100-8. PubMed ID: 21905735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytol metabolism in plants.
    Gutbrod K; Romer J; Dörmann P
    Prog Lipid Res; 2019 Apr; 74():1-17. PubMed ID: 30629961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.