BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6060474)

  • 1. Fructose 1,6-diphosphate and 3',5'-cyclic AMP as positive effectors of pyruvate kinase in developing embryos.
    Milman LS; Yurowitzki YuG
    Biochim Biophys Acta; 1967 Sep; 146(1):301-4. PubMed ID: 6060474
    [No Abstract]   [Full Text] [Related]  

  • 2. [Regulation of pyruvate kinase activity by fructoso-1,6-diphosphate in the developing embryo].
    Iurovitskiĭ IuG; Mil'man LS
    Dokl Akad Nauk SSSR; 1967 Aug; 175(6):1404-6. PubMed ID: 5630334
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification and allosteric properties of yeast pyruvate kinase.
    Haeckel R; Hess B; Lauterborn W; Wüster KH
    Hoppe Seylers Z Physiol Chem; 1968 May; 349(5):699-714. PubMed ID: 4386962
    [No Abstract]   [Full Text] [Related]  

  • 4. [Phosphofructokinase activity and Pasteur effect regulation in early embryogenesis].
    Mil'man LS; Iurovitskiĭ IuG
    Biokhimiia; 1967; 32(2):416-22. PubMed ID: 4232536
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of sleep on brain labile phosphates and metabolic rate.
    Van den Noort S; Brine K
    Am J Physiol; 1970 May; 218(5):1434-9. PubMed ID: 4245209
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction between potassium-, ammonium- and fructose-1,6-diphosphate activation of yeast pyruvate kinase.
    Hess B; Haeckel R
    Nature; 1967 May; 214(5090):848-9. PubMed ID: 6051883
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of red cell glycolysis. The cause of triose phosphate accumulation.
    Rose IA; Warms JV
    J Biol Chem; 1970 Aug; 245(16):4009-15. PubMed ID: 4395680
    [No Abstract]   [Full Text] [Related]  

  • 8. Control of glycolysis in the human red blood cell.
    Rose IA; Warms JV
    J Biol Chem; 1966 Nov; 241(21):4848-54. PubMed ID: 4288723
    [No Abstract]   [Full Text] [Related]  

  • 9. The control of glycolysis in early embryogenesis.
    Milman LS; Yurowitzki YG
    Biochim Biophys Acta; 1967 Nov; 148(2):362-71. PubMed ID: 4294666
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of pyruvate kinase by fructose 1,6-diphosphate in Saccharomyces cerevisiae.
    Barwell CJ; Woodward B; Brunt RV
    Eur J Biochem; 1971 Jan; 18(1):59-64. PubMed ID: 5540517
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of pyruvate kinase from Thiobacillus neapolitanus.
    Cornish AS; Johnson EJ
    Arch Biochem Biophys; 1971 Feb; 142(2):584-90. PubMed ID: 5550161
    [No Abstract]   [Full Text] [Related]  

  • 12. The mechanism of inhibition of glycolysis by quinidine in heart tissue in vitro.
    Horn RS
    Biochem Pharmacol; 1968 Aug; 17(8):1717-25. PubMed ID: 4233761
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymic control of fructolysis in primate spermatozoa.
    Hoskins DD; Stephens DT; Casillas ER
    Biochim Biophys Acta; 1971 May; 237(2):227-38. PubMed ID: 4328391
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of morphine, nalorphine and pentobarbital alone and in combination on cerebral glycolytic substrates and cofactors of rats in vivo.
    Dodge PW; Takemori AE
    Biochem Pharmacol; 1972 Feb; 21(3):287-94. PubMed ID: 5014487
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of the Crabtree effect in yeast grown with different glucose concentrations.
    Hommes FA
    Arch Biochem Biophys; 1966 Feb; 113(2):324-30. PubMed ID: 4223156
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenine nucleotide concentration and redox value of human spermatozoa.
    Sosa A; Altamirano E; Giner J; Rosado A
    Biol Reprod; 1972 Dec; 7(3):326-31. PubMed ID: 4404661
    [No Abstract]   [Full Text] [Related]  

  • 17. Factors affecting the level and activity of pyruvate kinase from Coprinus lagopus sensu Buller.
    Stewart GR; Moore D
    J Gen Microbiol; 1971 Jun; 66(3):361-70. PubMed ID: 5093417
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of glycogenolysis in the toad's urinary bladder. The effect of anaerobiosis, sodium transport, and arginine vasotocin.
    Handler JS; Preston AS; Rogulski J
    J Biol Chem; 1968 Apr; 243(7):1376-83. PubMed ID: 4296685
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of the properties of the pyruvate kinases of the fat body and flight muscle of the adult male desert locust.
    Bailey E; Walker PR
    Biochem J; 1969 Feb; 111(3):359-64. PubMed ID: 5767056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorometric determination of glycolytic intermediates and adenylates during sequential changes in replacement culture of Aspergillus niger.
    Smith JE; Ng WS
    Can J Microbiol; 1972 Nov; 18(11):1657-64. PubMed ID: 4263885
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.