These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6061418)

  • 1. Intrinsic dissociation constants of aspartyl and glutamyl carboxyl groups.
    Nozaki Y; Tanford C
    J Biol Chem; 1967 Oct; 242(20):4731-5. PubMed ID: 6061418
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular orbital calculations on the conformation of polypeptides and proteins. 8. The conformational energy maps and stereochemical rotational states of the asparaginyl, glutaminyl aspartyl and glutamyl residues.
    Maigret B; Perahia D; Pullman B
    Biopolymers; 1971; 10(9):1649-60. PubMed ID: 5126131
    [No Abstract]   [Full Text] [Related]  

  • 3. Deuterated amino acids. 3. Synthesis of DL-Aspartic-2,3,3-d-3 acid, L-glutamic-2,3,3,4,4-d-5 acid, L-asparagine-2,3,3-d-3, and L-Glutamine-2,3,3,4,4-d-5 1,2a.
    Blomquist AT; Hiscock BF; Harpp DN
    J Org Chem; 1966 Dec; 31(12):4121-7. PubMed ID: 5978078
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetic studies on the action of carboxypeptidase A on bovine insulin and related model peptides.
    Slobin LI; Carpenter FH
    Biochemistry; 1966 Feb; 5(2):499-508. PubMed ID: 5940935
    [No Abstract]   [Full Text] [Related]  

  • 5. Carbon 13 nuclear magnetic resonance of pentapeptides of glycine containing central residues of serine, threonine, aspartic and glutamic acids, asparagine, and glutamine.
    Keim P; Vigna RA; Morrow JS; Marshall RC; Gurd FR
    J Biol Chem; 1973 Nov; 248(22):7811-8. PubMed ID: 4750428
    [No Abstract]   [Full Text] [Related]  

  • 6. Potentiometric titration behavior of polyaspartic acid prepared by thermal polycondensation.
    Kokufuta E; Suzuki S; Harada K
    Biosystems; 1977 Dec; 9(4):211-4. PubMed ID: 597593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of exposed aspartyl and glutamyl residues in proteins to asparaginyl and glutaminyl residues.
    Lewis SD; Shafer JA
    Biochim Biophys Acta; 1973 Apr; 303(2):284-91. PubMed ID: 4575690
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymes as reagents in peptide synthesis: enzyme-labile protection for carboxyl groups.
    Glass J; Pelzig M
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2739-41. PubMed ID: 268623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid protease from germinated sorghum. 2. Substrate specificity with synthetic peptides and ribonuclease A.
    Garg GK; Virupaksha TK
    Eur J Biochem; 1970 Nov; 17(1):13-8. PubMed ID: 5486576
    [No Abstract]   [Full Text] [Related]  

  • 10. Carboxyl group modification and amide assignments in automated sequencing of proteins.
    Gibson D; Anderson PJ
    Biochem Biophys Res Commun; 1972 Oct; 49(2):453-9. PubMed ID: 4640370
    [No Abstract]   [Full Text] [Related]  

  • 11. Chemical mutations of the catalytic carboxyl groups in lysozyme to the corresponding amides.
    Kuroki R; Yamada H; Moriyama T; Imoto T
    J Biol Chem; 1986 Oct; 261(29):13571-4. PubMed ID: 3759981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat capacities from 11 to 305 degree K, entropies and free energies of formation of L-asparagine monohydrate, L-aspartic acid, L-glutamic acid, and L-glutamine.
    HUTCHENS JO; COLE AG; ROBIE RA; STOUT JW
    J Biol Chem; 1963 Jul; 238():2407-12. PubMed ID: 13955915
    [No Abstract]   [Full Text] [Related]  

  • 13. PAPER CHROMATOGRAPHY USING LIQUID ION EXCHANGERS.
    ORME-JOHNSON WH; SKINNER CG
    J Chromatogr; 1963 Aug; 11():549-51. PubMed ID: 14062614
    [No Abstract]   [Full Text] [Related]  

  • 14. The hydrolysis of some N-acylaspartic and N-acylglutamic monoamides in dilute mineral acid.
    Ali M; Capindale JB
    Can J Biochem; 1975 Nov; 53(11):1138-44. PubMed ID: 1192256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpies of hydrolysis of glutamine and asparagine and of ionization of glutamic and aspartic acids.
    KITZINGER C; HEMS R
    Biochem J; 1959 Feb; 71(2):395-400. PubMed ID: 13628583
    [No Abstract]   [Full Text] [Related]  

  • 16. Modification of carboxyl groups in pepsin.
    Matyash LF; Ogloblina OG; Stepanov VM
    Eur J Biochem; 1973 Jun; 35(3):540-5. PubMed ID: 4581269
    [No Abstract]   [Full Text] [Related]  

  • 17. BOUND GAMMA-AMINOBUTYRIC AND OTHER AMINO ACIDS IN BRAIN.
    ELLIOTT KA; KHAN RT; BILODEAU F; LOVELL RA
    Can J Biochem; 1965 Mar; 43():407-16. PubMed ID: 14329908
    [No Abstract]   [Full Text] [Related]  

  • 18. Isotachophoretic analysis of serum for aspartic acid, asparagine, glutamic acid and glutamine.
    Robinson DV; Rimpler M
    J Clin Chem Clin Biochem; 1978 Jan; 16(1):1-4. PubMed ID: 632753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acid hydrolysis of 2-acetamido-1-N-(4-L-aspartyl)-2-deoxy- -D-glucopyranosylamine.
    Cowley DE; Hough L; Khan MY
    Carbohydr Res; 1971 Sep; 19(2):242-4. PubMed ID: 5151643
    [No Abstract]   [Full Text] [Related]  

  • 20. Glutamyl, aspartyl and amide moieties of cerebral proteins: metabolic aspects in vitro.
    Wherrett JR; Tower DB
    J Neurochem; 1971 Jun; 18(6):1027-42. PubMed ID: 5567896
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.