These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6065890)

  • 41. A simple model of aerobic metabolism: applications to work transitions in muscle.
    Funk CI; Clark A; Connett RJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C995-1005. PubMed ID: 2141761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The exchange of 18O between water and phosphate compounds in isolated frog sartorius muscle under conditions of negative work.
    Maréchal G; Mommaerts WF; Seraydarian K
    J Mechanochem Cell Motil; 1974; 3(1):39-54. PubMed ID: 4457580
    [No Abstract]   [Full Text] [Related]  

  • 43. High-energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle.
    Cerretelli P; Di Prampero PE; Ambrosoli G
    Am J Physiol; 1972 Apr; 222(4):1021-6. PubMed ID: 4537281
    [No Abstract]   [Full Text] [Related]  

  • 44. The exchange of frog muscle Na+ and K+ in the presence of the anions Br-, NO3-, I- and CNS-.
    EDWARDS C; HARRIS EJ; NISHIE K
    J Physiol; 1957 Mar; 135(3):560-6. PubMed ID: 13417122
    [No Abstract]   [Full Text] [Related]  

  • 45. Paper chromatographic separation and determination of nucleoside phosphates in acidic rat tissue extracts.
    Forgách T; Rosdy B; Szporny L
    Acta Biochim Biophys Acad Sci Hung; 1971; 6(1):9-21. PubMed ID: 4330114
    [No Abstract]   [Full Text] [Related]  

  • 46. The release of adenosine triphosphate from frog skeletal muscle in vitro.
    Boyd IA; Forrester T
    J Physiol; 1968 Nov; 199(1):115-35. PubMed ID: 4300870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Electrophysiological studies on the suppression of potassium paralysis of frog myocardium by ATP].
    KOTOWSKI H; ANTONI H; FLECKENSTEIN A
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1959; 270():85-102. PubMed ID: 14411313
    [No Abstract]   [Full Text] [Related]  

  • 48. Effect of extracellular pH and DNFB treatment on the mechanical performance of frog skeletal muscle.
    Raj M; Chatterji A; Singh AK; Amin M
    Indian J Biochem Biophys; 1989 Oct; 26(5):325-8. PubMed ID: 2628270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors influencing the sodium movement in frog muscle with a discussion of the mechanism of sodium movement.
    EDWARDS C; HARRIS EJ
    J Physiol; 1957 Mar; 135(3):567-80. PubMed ID: 13417123
    [No Abstract]   [Full Text] [Related]  

  • 50. [A micromethod for the determination of metabolites in muscle].
    Zwiebel R; Kirsten R
    Z Klin Chem Klin Biochem; 1968 Sep; 6(5):407-11. PubMed ID: 5724315
    [No Abstract]   [Full Text] [Related]  

  • 51. [Effect of ATP and potassium on the pacemaker automatism in the frog and mammal heart].
    KOTOWSKI H; ANTONI H; VAHLENKAMP H; FLECKENSTEIN A
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1961; 273():45-61. PubMed ID: 13753497
    [No Abstract]   [Full Text] [Related]  

  • 52. Phosphate uptake into organic compounds in skeletal muscle.
    Dunkley CR; Manery JF
    Can J Physiol Pharmacol; 1975 Apr; 53(2):317-20. PubMed ID: 1137827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal correlation between initial increase in active outward Na transport and energy metabolism in the canine carotid artery during metabolic poisoning by monoiodoacetate.
    Siegel G; Schott A; Koepchen HP
    Pflugers Arch; 1969; 312(1):R48-9. PubMed ID: 5390258
    [No Abstract]   [Full Text] [Related]  

  • 54. Cholinesterase and sodium transport by frog muscle.
    VAN DER KLOOT WG
    Nature; 1956 Aug; 178(4529):366-7. PubMed ID: 13358749
    [No Abstract]   [Full Text] [Related]  

  • 55. Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle.
    Kennedy BG; De Weer P
    J Gen Physiol; 1976 Oct; 68(4):405-20. PubMed ID: 1086888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ascaris lumbricoides: extraglycolytic phosphorylation in intact muscle.
    Fischerová H; Kubistová J
    Exp Parasitol; 1968 Oct; 23(2):244-53. PubMed ID: 5726860
    [No Abstract]   [Full Text] [Related]  

  • 57. Alterations in high-energy phosphates in hemorrhagic shock as related to tissue and organ function.
    Chaudry IH; Sayeed MM; Baue AE
    Surgery; 1976 Jun; 79(6):666-8. PubMed ID: 1273752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Influence of muscle denervation on the concentration of Na+ and K+ ions of frog muscle].
    Nicolet M
    C R Seances Soc Biol Fil; 1968 Jul; 162(1):111-3. PubMed ID: 4235990
    [No Abstract]   [Full Text] [Related]  

  • 59. [Effect of elevated H+ concentration in the media on the concentration of high energy phosphates and the membrane potential of the isolated frog's skeletal muscle].
    Elze P; Sinz V; Küchler G
    Acta Biol Med Ger; 1967; 19(2):297-309. PubMed ID: 5591567
    [No Abstract]   [Full Text] [Related]  

  • 60. The energy requirement for sodium extrusion from a frog muscle.
    KEYNES RD; MAISEL GW
    Proc R Soc Lond B Biol Sci; 1954 May; 142(908):383-92. PubMed ID: 13177572
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.