These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6066278)

  • 1. A computer program for fitting data to the Michaelis-Menten equation.
    Hanson KR; Ling R; Havir E
    Biochem Biophys Res Commun; 1967 Oct; 29(2):194-7. PubMed ID: 6066278
    [No Abstract]   [Full Text] [Related]  

  • 2. Pocket computer program for fitting the Michaelis-Menten equation.
    Oestreicher EG; Pinto GF
    Comput Biol Med; 1983; 13(4):309-15. PubMed ID: 6689285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting of enzyme kinetic data without prior knowledge of weights.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1981 Mar; 193(3):1005-8. PubMed ID: 7305951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pocket computer program for fitting the Hill equation.
    Pinto GF; Oestreicher EG
    Comput Biol Med; 1984; 14(4):507-11. PubMed ID: 6548948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS.
    DOWD JE; RIGGS DS
    J Biol Chem; 1965 Feb; 240():863-9. PubMed ID: 14275146
    [No Abstract]   [Full Text] [Related]  

  • 7. Fitting enzyme-kinetic data to V/K.
    Northrop DB
    Anal Biochem; 1983 Jul; 132(2):457-61. PubMed ID: 6625178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The computation of hyperbolic dependences in enzyme kinetics.
    Airas RK
    Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two methods for fitting a rectangular hyperbola to data from several animals.
    Nimmo IA
    Biochem J; 1976 Aug; 157(2):493-4. PubMed ID: 962878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer analysis of the validity of the integrated Michaelis-Menten equation.
    Stayton MM; Fromm HJ
    J Theor Biol; 1979 Jun; 78(3):309-23. PubMed ID: 513785
    [No Abstract]   [Full Text] [Related]  

  • 11. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer method for the kinetic analysis of enzyme activity.
    Dolara P; Agresti A
    Monogr Neural Sci; 1976; 3():124-8. PubMed ID: 979993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods.
    Cornish-Bowden A; Eisenthal R
    Biochem J; 1974 Jun; 139(3):721-30. PubMed ID: 4854389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Least squares fit of data to hyperbolic dose-response curves using a programmed minicalculator (TI-59).
    Schiff JD
    Int J Biomed Comput; 1983 May; 14(3):231-8. PubMed ID: 6874133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data.
    Gutheil WG; Kettner CA; Bachovchin WW
    Anal Biochem; 1994 Nov; 223(1):13-20. PubMed ID: 7695087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of two methods for fitting the integrated Michaelis-Menten equation.
    Nimmo IA; Atkins GL
    Biochem J; 1974 Sep; 141(3):913-4. PubMed ID: 4463971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.
    Sakoda M; Hiromi K
    J Biochem; 1976 Sep; 80(3):547-55. PubMed ID: 977553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?
    Goličnik M
    J Enzyme Inhib Med Chem; 2013 Aug; 28(4):879-93. PubMed ID: 22630075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.