These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6067730)

  • 1. Metabolism of glycine by rumen microorganisms.
    Wright DE; Hungate RE
    Appl Microbiol; 1967 Jan; 15(1):152-7. PubMed ID: 6067730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Citric acid metabolism in the bovine rumen.
    Wright DE
    Appl Microbiol; 1971 Feb; 21(2):165-8. PubMed ID: 5549696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    Biochim Biophys Acta; 1968 Jan; 152(1):40-9. PubMed ID: 5689520
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of peptides by rumen microorganisms.
    Wright DE
    Appl Microbiol; 1967 May; 15(3):547-50. PubMed ID: 6035045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets.
    Salter DN; Daneshvar K; Smith RH
    Br J Nutr; 1979 Jan; 41(1):197-209. PubMed ID: 420753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids.
    Blake JS; Salter DN; Smith RH
    Br J Nutr; 1983 Nov; 50(3):769-82. PubMed ID: 6639932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen.
    Allison MJ; Robinson IM; Baetz AL
    J Bacteriol; 1974 Jan; 117(1):175-80. PubMed ID: 4855566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruminal metabolism of ammonia N and rapeseed meal soluble N fraction.
    Stefański T; Ahvenjärvi S; Vanhatalo A; Huhtanen P
    J Dairy Sci; 2020 Aug; 103(8):7081-7093. PubMed ID: 32505411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of stable isotopes to measure de novo synthesis and turnover of amino acid-C and -N in mixed micro-organisms from the sheep rumen in vitro.
    Atasoglu C; Guliye AY; Wallace RJ
    Br J Nutr; 2004 Feb; 91(2):253-62. PubMed ID: 14756911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic fate of cysteine and methionine in rumen digesta.
    Nader CJ; Walker DJ
    Appl Microbiol; 1970 Nov; 20(5):677-81. PubMed ID: 5485079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of volatile fatty acid production in cattle: distribution of infusates in the rumen.
    Sutton JD; Macleod GK; Sissons JW; Johnson VW
    Proc Nutr Soc; 1972 Sep; 31(2):67A-68A. PubMed ID: 5083291
    [No Abstract]   [Full Text] [Related]  

  • 12. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool.
    Hungate RE; Reichl J; Prins R
    Appl Microbiol; 1971 Dec; 22(6):1104-13. PubMed ID: 5167618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of acetate by rumen microorganisms.
    Emmanuel B; Milligan LP; Turner BV
    Can J Microbiol; 1974 Feb; 20(2):183-5. PubMed ID: 4822786
    [No Abstract]   [Full Text] [Related]  

  • 14. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation.
    Hawke JC
    Biochim Biophys Acta; 1971 Nov; 248(2):167-70. PubMed ID: 5130449
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria.
    Russell JB; Sniffen CJ; Van Soest PJ
    J Dairy Sci; 1983 Apr; 66(4):763-75. PubMed ID: 6853798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?
    Cantalapiedra-Hijar G; Fouillet H; Huneau JF; Fanchone A; Doreau M; Nozière P; Ortigues-Marty I
    Animal; 2016 Feb; 10(2):221-9. PubMed ID: 26776494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of the isovalerate carboxylation pathway of leucine biosynthesis in the rumen.
    Allison MJ; Bucklin JA; Robinson IM
    Appl Microbiol; 1966 Sep; 14(5):807-14. PubMed ID: 5970468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of adenosine triphosphate on porphyrin excretion and on glycine metabolism in Rhodopseudomonas spheroides.
    Gajdos A; Gajdos-Török M; Gorchein A; Neuberger A; Tait GH
    Biochem J; 1968 Jan; 106(1):185-92. PubMed ID: 5721455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rumen protein degradation and biosynthesis. I. A new method for determination of protein degradation in rumen fluid in vitro.
    Raab L; Cafantaris B; Jilg T; Menke KH
    Br J Nutr; 1983 Nov; 50(3):569-82. PubMed ID: 6639918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of the nucleic acids in mixed rumen bacteria on incubation with different media.
    Smith RC; Smith RH
    Br J Nutr; 1977 May; 37(3):389-94. PubMed ID: 861190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.