These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 6069107)
21. [Accumulation of aminoacyl-tRNA in rat liver ribosomes]. Kramer G; Klink F Z Naturforsch B; 1967 Dec; 22(12):1312-8. PubMed ID: 4384726 [No Abstract] [Full Text] [Related]
22. RNA CODEWORDS AND PROTEIN SYNTHESIS, 3. ON THE NUCLEOTIDE SEQUENCE OF A CYSTEINE AND A LEUCINE RNA CODEWORD. LEDER P; NIRENBERG MW Proc Natl Acad Sci U S A; 1964 Dec; 52(6):1521-9. PubMed ID: 14243527 [No Abstract] [Full Text] [Related]
23. Polyadenylic acid-directed binding of oligolysyl transfer RNA to ribosomes. Inhibition by lysyl and deacylated transfer RNA. Ikemura T; Fukutome H Biochim Biophys Acta; 1969 May; 182(1):98-104. PubMed ID: 4893419 [No Abstract] [Full Text] [Related]
24. Different anticodons in purified valine tRNA fractions from yeast. Mirzabekov AD; Grünberger D; Krutilina AI; Holý A; Bayev AA; Sorm F Biochim Biophys Acta; 1968 Aug; 166(1):75-81. PubMed ID: 5748830 [No Abstract] [Full Text] [Related]
25. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Graf H Biochim Biophys Acta; 1976 Mar; 425(2):175-84. PubMed ID: 1252498 [TBL] [Abstract][Full Text] [Related]
26. Template activity of uridylic acid-dihydrouridylic acid copolymers. Rottman F; Cerutti P Proc Natl Acad Sci U S A; 1966 Apr; 55(4):960-6. PubMed ID: 5327075 [No Abstract] [Full Text] [Related]
27. Modified aminoacyl-tRNA. IV. The behaviour of acyl[14C]phenylalanyl-tRNA in a ribosomal system from wheat germ. de Groot N; Panet A; Fry-Shafrir I; Lapidot Y Biochim Biophys Acta; 1968 Jun; 161(1):137-46. PubMed ID: 5661364 [No Abstract] [Full Text] [Related]
28. Inactivation of valine acceptor ativity by a C-U missense change in the anticodon of yeast valine transfer ribonucleic acid. Chambers RW; Aoyagi S; Furukawa Y; Zawadzka H; Bhanot OS J Biol Chem; 1973 Aug; 248(15):5549-51. PubMed ID: 4588688 [No Abstract] [Full Text] [Related]
29. Inhibition by homogentisic acid of polypeptide synthesis in rat liver and brain ribosomal systems. Peterson NA; Raghupathy E; McKean CM Biochim Biophys Acta; 1971 Jan; 228(1):268-81. PubMed ID: 5546567 [No Abstract] [Full Text] [Related]
30. Formation of a dead code triplet through replacement of the terminal ribonucleoside in guanylyl-uridylyl-uridine and guanylyl-uridylyl-cytidine by 6-azacytidine. Skoda J; Smrt J; Lisý V; Holý A; Sorm F Mol Pharmacol; 1966 Nov; 2(6):608-10. PubMed ID: 5337733 [No Abstract] [Full Text] [Related]
31. Initiation of protein synthesis,I. Effect of formylation of methionyl-tRNA on codon recognition. Leder P; Bursztyn H Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1579-85. PubMed ID: 5339625 [No Abstract] [Full Text] [Related]
32. The RNA code and protein synthesis. Nirenberg M; Caskey T; Marshall R; Brimacombe R; Kellogg D; Doctor B; Hatfield D; Levin J; Rottman F; Pestka S; Wilcox M; Anderson F Cold Spring Harb Symp Quant Biol; 1966; 31():11-24. PubMed ID: 5237186 [No Abstract] [Full Text] [Related]
33. Sequential translation of trinucleotide codons for peptide bond formation, translocation, and termination. Tompkins RK Proc Natl Acad Sci U S A; 1970 Aug; 66(4):1164-9. PubMed ID: 4921478 [TBL] [Abstract][Full Text] [Related]
34. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes. Roberts WS; Petit JF; Strominger JL J Biol Chem; 1968 Feb; 243(4):768-72. PubMed ID: 5638593 [No Abstract] [Full Text] [Related]
35. Structure and function of transfer ribonucleic acid. IV. Complexes between valyl transfer ribonucleic acid synthetase and structurally modified transfer ribonucleic acid specific for valine. Lagerkvist U; Rymo L J Biol Chem; 1970 Jan; 245(2):435-8. PubMed ID: 4312675 [No Abstract] [Full Text] [Related]
36. Binding of valine tRNA, fragments to 70-S, 50-S and 30-S ribosomal particles. Mirzabekov AD; Grünberger D; Bayev AA Biochim Biophys Acta; 1968 Aug; 166(1):68-74. PubMed ID: 4880560 [No Abstract] [Full Text] [Related]
37. Effect of 5'-terminal phosphate on the recognition of some dinucleoside phosphates by [14C]aminoacyl-tRNA. Grünberger D; Holý A; Sorm F Biochim Biophys Acta; 1968 Apr; 157(2):439-42. PubMed ID: 5649917 [No Abstract] [Full Text] [Related]
38. Synthesis and coding properties of 8-azaguanosinecontaining triribonucleoside diphosphates. Grünberger D; Holý A; Sorm F Biochim Biophys Acta; 1968 Jun; 161(1):147-55. PubMed ID: 5661366 [No Abstract] [Full Text] [Related]
39. Recognition of nonsense codons in mammalian cells. Hatfield D Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3014-8. PubMed ID: 4562751 [TBL] [Abstract][Full Text] [Related]
40. The effect of GTP hydrolysis by the peptide elongation enzymes on the sedimentation of ribosomes bearing peptidyl-tRNA and on the susceptibility of ribosome-bound tRNA to hydrolysis by ribonuclease. Culp W; Odom OW; Hardesty B Arch Biochem Biophys; 1973 Apr; 155(2):225-36. PubMed ID: 4350250 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]