BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 6069132)

  • 1. The substrate specificity of carnitine acetyltransferase.
    Chase JF
    Biochem J; 1967 Aug; 104(2):510-8. PubMed ID: 6069132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-dependence of carnitine acetyltransferase activity.
    Chase JF
    Biochem J; 1967 Aug; 104(2):503-9. PubMed ID: 6048792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites.
    Edwards MR; Bird MI; Saggerson ED
    Biochem J; 1985 Aug; 230(1):169-79. PubMed ID: 4052034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyl-CoA chain length affects the specificity of various carnitine palmitoyltransferases with respect to carnitine analogues. Possible application in the discrimination of different carnitine palmitoyltransferase activities.
    Murthy MS; Ramsay RR; Pande SV
    Biochem J; 1990 Apr; 267(1):273-6. PubMed ID: 2327985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditions for the self-catalysed inactivation of carnitine acetyltransferase. A novel form of enzyme inhibition.
    Chase JF; Tubbs PK
    Biochem J; 1969 Jan; 111(2):225-35. PubMed ID: 5763788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site probes of carnitine acyltransferases. Inhibition of carnitine acetyltransferase by hemiacetylcarnitinium, a reaction intermediate analogue.
    Gandour RD; Colucci WJ; Stelly TC; Brady PS; Brady LJ
    Biochem Biophys Res Commun; 1986 Jul; 138(2):735-41. PubMed ID: 3741430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some kinetic studies on the mechanism of action of carnitine acetyltransferase.
    Chase JF; Tubbs PK
    Biochem J; 1966 Apr; 99(1):32-40. PubMed ID: 5965344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ciprofibrate and 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA) on the distribution of carnitine and CoA and their acyl-esters and on enzyme activities in rats. Relation between hepatic carnitine concentration and carnitine acetyltransferase activity.
    Bhuiyan AK; Bartlett K; Sherratt HS; Agius L
    Biochem J; 1988 Jul; 253(2):337-43. PubMed ID: 3178716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of [14C]malonyl-CoA to rat liver mitochondria after blocking of the active site of carnitine palmitoyltransferase I. Displacement of low-affinity binding by palmitoyl-CoA.
    Grantham BD; Zammit VA
    Biochem J; 1986 Jan; 233(2):589-93. PubMed ID: 3954755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfluoro-N-decanoic acid effects on enzymes of fatty acid metabolism.
    Singer SS; Andersen ME; George ME
    Toxicol Lett; 1990 Nov; 54(1):39-46. PubMed ID: 2244339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism.
    Jenkins DL; Griffith OW
    J Biol Chem; 1985 Nov; 260(27):14748-55. PubMed ID: 3840486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between palmitoyl-coenzyme A synthetase activity and esterification of sn-glycerol 3-phosphate in rat liver mitochondria.
    Sánchez M; Nicholls DG; Brindley DN
    Biochem J; 1973 Apr; 132(4):697-706. PubMed ID: 4721605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isothermal titration calorimetric studies of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Determinants of binding energy and catalytic discrimination among acyl-CoA and peptide ligands.
    Bhatnagar RS; Jackson-Machelski E; McWherter CA; Gordon JI
    J Biol Chem; 1994 Apr; 269(15):11045-53. PubMed ID: 8157630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogs of palmitoyl-CoA that are substrates for myristoyl-CoA:protein N-myristoyltransferase.
    Rudnick DA; Lu T; Jackson-Machelski E; Hernandez JC; Li Q; Gokel GW; Gordon JI
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10507-11. PubMed ID: 1438240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat.
    McGarry JD; Mills SE; Long CS; Foster DW
    Biochem J; 1983 Jul; 214(1):21-8. PubMed ID: 6615466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle.
    Cederblad G; Carlin JI; Constantin-Teodosiu D; Harper P; Hultman E
    Anal Biochem; 1990 Mar; 185(2):274-8. PubMed ID: 2339783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of carnitine acetyltransferase by metabolites of 4-pentenoic acid.
    Zhong J; Fong JC; Schulz H
    Arch Biochem Biophys; 1985 Aug; 240(2):524-9. PubMed ID: 4026294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different sites of inhibition of carnitine palmitoyltransferase by malonyl-CoA, and by acetyl-CoA and CoA, in human skeletal muscle.
    Zierz S; Engel AG
    Biochem J; 1987 Jul; 245(1):205-9. PubMed ID: 3663146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.