These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 607018)

  • 1. A simple network thermodynamic method for modeling series-parallel coupled flows. I. The linear case.
    Mikulecky DC; Wiegand WA; Shiner JS
    J Theor Biol; 1977 Dec; 69(3):471-510. PubMed ID: 607018
    [No Abstract]   [Full Text] [Related]  

  • 2. A simple network thermodynamic method for series-parallel coupled flows: II. The non-linear theory, with applications to coupled solute and volume flow in a series membrane.
    Mikulecky DC
    J Theor Biol; 1977 Dec; 69(3):511-41. PubMed ID: 607019
    [No Abstract]   [Full Text] [Related]  

  • 3. A simple network thermodynamic method for series-parallel coupled flows. III. Application to coupled solute and volume flows through epithelial membranes.
    Mikulecky DC; Thomas SR
    J Theor Biol; 1978 Aug; 73(4):697-710. PubMed ID: 703342
    [No Abstract]   [Full Text] [Related]  

  • 4. Equilibrium potentials of membrane electrodes.
    Wang JH; Copeland E
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1909-11. PubMed ID: 4516194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Modelling of a biological membrane transport system by network thermodynamics].
    Imai Y
    Nihon Seirigaku Zasshi; 1988; 50(1):1-13. PubMed ID: 3373435
    [No Abstract]   [Full Text] [Related]  

  • 6. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit.
    Mikulecky DC
    Biophys J; 1979 Feb; 25(2 Pt 1):323-39. PubMed ID: 262391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [THERMODYNAMIC BASIS FOR THE THEORY OF THE MEMBRANE POTENTIAL].
    PALATY V
    Cesk Fysiol; 1964 Oct; 13():461-8. PubMed ID: 14226147
    [No Abstract]   [Full Text] [Related]  

  • 8. A network thermodynamic model of salt and water flow across the kidney proximal tubule.
    Thomas SR; Mikulecky DC
    Am J Physiol; 1978 Dec; 235(6):F638-48. PubMed ID: 736148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane potentials and ion permeability in a cation exchange membrane.
    Gunn RB; Curran PF
    Biophys J; 1971 Jul; 11(7):559-71. PubMed ID: 5089914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of electrogenic pumps and parallel passive pathways to transmembrane voltage.
    Rehm WS; Carrasquer G; Schwartz M
    Prog Clin Biol Res; 1983; 126():313-27. PubMed ID: 6310640
    [No Abstract]   [Full Text] [Related]  

  • 12. Network thermodynamic modeling of hormone regulation of active Na+ transport in cultured renal epithelium (A6).
    Fidelman ML; Mikulecky DC
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C978-91. PubMed ID: 2424318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active transport: conditions for linearity and symmetry far from equilibrium.
    Essig A; Caplan SR
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1647-51. PubMed ID: 6940178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.
    Mikulecky DC; Huf EG; Thomas SR
    Biophys J; 1979 Jan; 25(1):87-105. PubMed ID: 262387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass transfer in the cornea. II. Ion transport and electrical properties of a series membrane tissue.
    Friedman MH
    Biophys J; 1972 Apr; 12(4):325-50. PubMed ID: 5063051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative description of equilibrium and homeostatic thickness regulation in the in vivo cornea. I. Normal cornea.
    Friedman MH
    Biophys J; 1972 Jun; 12(6):648-65. PubMed ID: 5063840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The theory of transport phenomena in biological membranes. I. The passive transport and resting potential.
    Volkenstein MV; Fishman SN
    Biochim Biophys Acta; 1970 Mar; 203(1):1-9. PubMed ID: 5445677
    [No Abstract]   [Full Text] [Related]  

  • 18. Nonequilibrium thermodynamics of membrane-confined electrophoresis.
    Moody TP; Shepard HK
    Biophys Chem; 2004 Mar; 108(1-3):51-76. PubMed ID: 15043921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical potential differences across salt transporting membranes.
    Fletcher CR
    J Theor Biol; 1977 Jul; 67(2):255-68. PubMed ID: 895163
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationship between chemiosomotic flows and thermodynamic forces in oxidative phosphorylation.
    Van Dam K; Westerhoff HV; Krab K; van der Meer R; Arents JC
    Biochim Biophys Acta; 1980 Jul; 591(2):240-50. PubMed ID: 7397123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.